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X-ray absorption spectroscopy (XAS), which carries rich structural and
chemical information of the sample, is a widely used experimental technique
for material characterization in diverse scientific fields. This chapter is
devoted to the machine learning-based determination of three-dimensional
structures of metallic nanoparticles from their spectra. Once built, the
machine learning models can be used for parsing through a large volume of
experimental spectra in a short time, thus enabling on-the-fly analysis of
high-throughput and rapid data collection measurements. As a benchmark
test, we compared three regression models, i.e., Gradient boosted trees,
shallow/deep multilayer perceptron, and one-dimensional convolutional
neural networks. The results showed that the neural networks usually
performed better than most tree-based models, while the deep models
tended to exhibit higher performance than the shallow ones. Considering
the difference between training and testing data, we also evaluated transfer
learning, and showed that a significant performance increase can be
achieved with the help of partially labeled training data in the target
domain. Finally, we demonstrated the high potential of machine learning-
based approaches in applications for material science.
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1. Introduction

X-ray absorption spectroscopy (XAS) is a widely used experimental tech-
nique for materials characterization in diverse scientific fields including
condensed matter physics, materials science, chemistry, earth science, and
biology.1,2 X-rays have sufficient energy to eject a core electron from an
atom to the material’s empty states and continuum, giving rise to X-ray
absorption near edge structure (XANES) and extended X-ray absorption fine
structure (EXAFS), respectively, portions of the X-ray absorption coefficient.
Transitions from core to final states are determined by well-defined quantum
mechanical selection rules, and each element has specific binding energy.
Therefore, X-ray absorption spectra are element-specific and carry rich
structural and chemical information of the sample.

Synchrotron-based XAS is the state-of-the-art of X-ray techniques, which
takes the advantage of intense and tunable X-ray beams at radiation sources.
An emerging research frontier is to use synchrotron-based XAS to interrogate
functional materials under operando (latin for working/operating) conditions
in order to gain insights into the underlying mechanisms in complex chemical
and electrochemical processes. In this context, it is essential to decipher
local structural information from spectra measured at various stages of a
process such as chemical reaction or phase transformation. For example, one
wants to detect possible growth of a metal nanocatalyst and control it in
real time, during chemical reaction, to prevent catalyst deactivation. So a
major challenge is to solve the inverse problem in materials characterization,
i.e. determining key local structural motifs from the XAS spectra in real
time. While EXAFS is commonly used for solving the unknown local
structure around X-ray absorbing species, XANES has unique advantages
for structural refinement in operando studies.3 XANES is sensitive to local
electronic structure and local point group symmetry of the absorbing site.
It has higher tolerance than EXAFS in structural inhomogeneity, and is less
sensitive to disorder effects than EXAFS. Finally, XANES can be acquired
at harsher reaction conditions and with better time resolution than most of
EXAFS data.

The access to these large facilities is quite limited — with over 50 syn-
chrotron light sources around the world4 — due to the high construction cost
and operating expenses. Users often experience long waiting time before
performing their experiments in a very short time window, ranging from
several hours to a couple of days at the beam line. Due to these constraints,
it is timely to revisit the ways through which useful information is extracted
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from the vast amount of XANES data. On the other hand, it is also crucial
to make fast decisions to guide experimental processes, especially during
in situ operations, such as nanoparticle growth or catalytic reactions.
Machine-learning approaches applied to interpretation of XANES may offer
solutions for these challenges.

To illustrate what new opportunities for nanomaterials characterization
“on-the-fly” and reactions “on demand” emerge with the advent of new
data processing and analysis methods, we describe here one case study.
It is devoted to the machine-learning determination of three-dimensional
structure of metallic nanoparticles from their XANES spectra. In this
work, we apply supervised machine learning approaches to find the hidden
relationship between the XANES spectra and the descriptors of nanoparticle
structure. Once built, the machine learning models can be used for parsing
through a large volume of experimental spectra in a short time, thus
enabling on-the-fly analysis of high-throughput and rapid data collection
measurements. An immediate challenge in this approach is the availability
of a large representative, labeled training dataset with thousands of data
points. Clearly, it would be impractical to attempt to construct such
dataset from experimental measurements, because there is only a limited
number of such unique spectra for each material. Here we overcame this
bottleneck by constructing the training set via ab initio XANES simulations
validated against experiment. By using theoretical simulations, we can
generate a large number of spectra, corresponding to well-defined structure
motifs.

In our approach, we use average coordination numbers (CNs) for the
first few coordination shells {C1,C2,C3, . . .} that are known to characterize
the size and 3D shape of a nanoparticle with close-packed or nearly close-
packed structure.5 Next, we construct a training dataset using ab initio codes
FEFF6 and FDMNES.7 We generate theoretical XANES xi(E) (here E is
X-ray photon energy) for nanoparticles of different sizes/shapes. The sets of
corresponding average CNs can be calculated as Cj =

∑
i nij/N , where N

is the total number of atoms in the particle, and nij is the total number of
atoms in the jth coordination shell of the ith atom in the nanoparticle. The
machine learning models are then defined as a nonlinear function h(xi,

−→
Θ )→

{C̃1,C̃2,C̃3, . . .}i that uses as input a preprocessed and discretized XANES
spectrum xi and returns a vector {C̃1,C̃2,C̃3, . . .}i. During the training
process, we fit the NN parameters so that the distance between the true CNs
vector {C1,C2,C3, . . .} and NN output vector {C̃1,C̃2,C̃3, . . .} is minimized
for all spectra in our training set. Knowing the CNs, one can then proceed
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to estimate the corresponding NPs size and shape, following the established
prescription.5 For validation, we use particle-averaged XANES data for
particles that were used to construct training dataset as well as for particles
of other shapes and sizes with fcc-type structure, truncated by (100) and
(111) planes, and also with icosahedral and hcp structures. Further details
on how training and validation data were generated can be found in Ref. 8.

As the goal is to predict continuous, numeric variables, the coordinate
number prediction problem is a typical regression task. In this work, we
evaluate three major powerful and widely used regression models, i.e., the
gradient boosted trees, multilayer perceptron (MLP) and one-dimensional
convolutional neural networks (1D-CNN).

2. Regression Methods

In this section, we will briefly introduce and evaluate three regression models
used in this work.

Gradient boosted trees (GBT). Gradient boosted trees (GBT) is
an efficient machine learning model that ensembles a set of decision trees.9

Unlike the bagging-based method, e.g., random forest, which could parallelly
train each tree, the GBT computes a sequence of simple trees, where each
successive tree is trained for the prediction residuals of the preceding tree.
This way, with each tree built, the model becomes more expressive.

In this work, we train one GBT model for each coordination number, so
we have four models in total. In each model, we train 100 simple trees with
the depth of three.

Multilayer perceptron (MLP). A perceptron (neuron) is a functional
block that could be a precursor to many modern larger neural networks.
As shown in the left subfigure in Figure 1, a typical perceptron is simple
computational units that have weighted input signals and produce an output
signal using an (nonlinear) activation function.10

The MLP is a network that arranged by a number of perceptron. A typical
MLP is shown in the right subfigure in Figure 1. A column of perceptrons is
called a layer and MLP could be consists of multiple layers. In MLP, a layer
is fully connected with its neighbor layers. The leftmost and rightmost layers
are the input layer and output layer, respectively. Layers between them are
called hidden layers because that are not directly exposed to the input.

We evaluate two structures of MLP in this work, one is the shallow
structure which includes two layers with 400 nodes, and the other one is
relatively deep structure which has five layers with 400, 400, 200, 200, 100
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Figure 1. An illustration of an MLP structure.

nodes, respectively. In each layer, the tanh function is used as the activation
function.

One-dimensional convolutional neural networks (1D-CNN). We
also test one-dimensional convolutional neural networks (1D-CNN), which
have shown consistently excellent performance in many applications, such
as audio recognition, natural language processing, and etc.11 1D-CNN can
be considered as a special case of MLP with local connection and shared
weights. This way, it has much less number of weights compared with MLP.
It also has great capability of extracting local features and the receptive field
of the local feature extractors could be hierarchically extended from lower
layers to higher layers.

In our work, we build the 1D-CNN which have two convolution layers
with 32 and 64 kernels, respectively, and two fully connected layers. The
filter size is 30. In each convolutional layer, the rectified linear unit (ReLU)
is used as the activation function. Note that we do not utilize any pooling.

In Figure 2, the scatter plots qualitatively show the comparison of the
prediction values obtained from four different regression models and the
ground truth, with the mean absolute errors (MAE) for four different
coordination numbers.

3. Transfer Learning

Most machine learning methods often assume that the training data and
testing data are from the same feature space and follow similar distributions.
However, this assumption may not be true in many real applications. Namely,
the training data are obtained from one domain that we call source domain,
while the testing data come from a different domain that we call target
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Figure 2. Results of regression methods without using transfer learning.
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Figure 3. Illustrations of the distribution shift between source and target data.

domain. In this case, the data samples show different distributions in the
feature space. In Figure 3, we show several examples that illustrate the
difference distributions between the source and target domains.

These domain differences lead to a dilemma that12: (1) directly applying
the models trained from one domain to another may result in significant
degraded performance and (2) labeling large number of data in each domain
as training samples would be very expensive. The dilemma consequently
poses the transfer learning opportunity, namely how to utilize the informa-
tion in a source domain to the target domain.

Recently, the works in machine learning and computer vision areas usually
apply the transfer learning as the following two steps13: (1) a pre-training
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step, training a model on a source domain, which usually has a large number
of labeled data, and (2) a fine tuning step, treating the pre-trained model
as the initialized model, rather than randomly initialized, and training on
labeled data from target domain. In this work, we also apply this strategy.
Specifically, we first train our model on the source data using the deep MLP,
and use it as the initialized model to train on target data. Moreover, it is well
known that the deep neural networks could be considered as the hierarchal
feature extractors, as the lower layers tend to extract the low level features,
while the higher layers tend to extract the high level task specific features.
Intuitively, for two related data, very similar or even the same low level
extractors should be used. Therefore, it is straightforward to freeze the lower
layers’ weights and only learn the weights in higher layers. Specifically, in
this work, we freeze the first two layers and only update the weights in three
higher layers. This way, we can also reduce the over fitting, considering the
amount of target training data is pretty limited.

We evaluate transfer learning strategy with different numbers (20%, 30%,
40% and 50%) of target training data are used. In each setting, we randomly
select the target training data for fine-tuning, and use this fine-tuned model
for predicting the rest of target data. We present qualitative results in
Figure 4 and quantitative results in Table 1.

4. Discussions

In this work, we compared three regression models, i.e., gradient boosted
trees (GBT), shallow (deep) MLP and 1D-CNN. In Figure 2, GBT shows
the lowest performance, shallow MLP shows the medium performance, while
1D-CNN and deep MLP reach the best. It follows the general trend observed
in many machine learning applications. With the large number of weights
and the hierarchical structure, neural networks usually showed the better
performance than most tree based models. In the meantime, the deep models
tend to exhibit higher performance than the shallow ones, if a large number
of training data are available.

Considering the difference between training and testing data, we also
evaluated the transfer learning. With the help of partial labeled training
data in the target, the performance increases significantly. Even though we
only had limited number of labeled training data in the target set, up to 36
samples, the mean absolute errors (MAE) drop from 0.2241 (without transfer
learning) to 0.1583 (36 labeled samples).
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Figure 4. Results of transfer learning.
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Table 1. Results of all comparisons in terms of mean absolute error.

Models CN1 CN2 CN3 CN4 Average

Without TL GBT 0.2457 0.2289 0.8599 0.6087 0.4858
1D-CNN 0.1029 0.1326 0.3849 0.2809 0.2253

MLP (shallow) 0.0907 0.1494 0.6838 0.3623 0.3215
MLP (deep) 0.1163 0.1541 0.3747 0.2512 0.2241

MLP with TL 20% labeled 0.1182 0.2052 0.3152 0.1994 0.2095
30% labeled 0.1475 0.1654 0.2827 0.2036 0.1998
40% labeled 0.1066 0.1346 0.3029 0.1720 0.1790
50% labeled 0.0949 0.1100 0.1956 0.2329 0.1584

5. Examples of Applications

So far in this chapter we have focused on the analysis of the performance of
our approach, when it is applied to theoretical data. The usefulness of this
method, however, is best demonstrated, when it is applied to the analysis
of real experimental XAS data. One needs to be aware that experimental
XAS data and theoretically simulated spectra may have differences due to
experimental noise, background contribution and systematic artifacts in the
experimental data pre-processing as well as due to systematic inaccuracies
of the approximations involved in the ab-initio calculations of XANES
spectra. Therefore the accuracy in the determination of structure parameters
by this method from experimental XANES data can be lower than that
demonstrated above in the tests with simulated data.

Nevertheless, in our previous works we showed that the accuracy of
the presented approach and its variations is sufficient to extract valuable
structural information that, on one hand, can be verified independently
for model systems, where complimentary experimental information (e.g.,
EXAFS data) is available, and, on the other hand, can provide unique
insights into the structure of metallic nanoparticles in the cases, when such
complimentary data cannot be collected or analyzed. For example, in our
study,8 where this approach was applied for the first time for the analysis
of experimental XANES data, we have applied it to the interpretation
of Pt L3-edge XANES data in Pt model nanocatalysts with narrow size-
and shape-distributions, supported on γ-Al2O3. Using MLP approach, we
extracted coordination numbers for the first four coordination shells, and
were able to link these CNs to possible particle sizes and shapes (using
existing approach5). In particular, we have found differences in the shapes
for particles, prepared via two different methods, which were confirmed
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with EXAFS data and microscopy data that were also available for this
model system. Since the catalytic activity of nanoparticles depend on particle
shape,14 this information may be important for the design of better catalysts.

In the follow-up studies, we extended this approach to Ag K-edge XANES
data and applied it for the first time to the analysis of in situ XANES
data: investigations of aggregation of silver clusters in ionic liquids.15,16 This
system is important for plasmonic applications. In this case, analysis of
XANES data allowed us, first, to independently obtain values of the first
shell coordination numbers (and, hence, particle sizes) and use them to verify
the CNs, extracted from the conventional EXAFS fitting. Such validation
with XANES data was important in this in situ study, because poor quality
of EXAFS data (due to low concentration of absorbing atoms) limited
significantly the accuracy of EXAFS method. Next, using our XANES-
based approach, we were able to extract also CNs for the second and third
coordination shells, and to use this information to determine the shape of
silver particles, which is a crucial parameter for understanding the plasmonic
effects. In this case, we have found that the aggregation of silver clusters takes
place without coalescence and that the shape and structure of individual
clusters within the aggregate is preserved.

In the next study,17 we focused on the analysis of Cu K-edge XANES
data in ultra-dispersed mass-selected copper clusters, prepared in the gas
phase and soft-landed on oxide support. XANES data were collected in
grazing incidence mode, and acquisition of EXAFS data is not possible for
this system due to low sample concentration, alignment issues and Bragg
scattering from the support. Extremely small sizes of analyzed clusters (just
a few atoms) make this system particularly challenging for investigations
with other experimental techniques as well. Moreover, in this material we
expect significant deviations in particle structure from that in the bulk.
In particular, shortening of Cu–Cu interatomic distance upon reduction of
particle size was suggested in the literature,18 but experimental evidences
of this trend were contradictory. To account for this effect, we included one
additional degree of freedom in the theoretical data used for MLP training —
an effective nearest-neighbor distance — and one corresponding additional
node in the MLP output layer. The modified MLP now allowed simultaneous
determination of coordination numbers (which can be directly linked to
particle sizes) and interatomic distances, and allowed us to confirm the
shortening of the latter ones for Cu particles of subnanometer size. Using
the information on particle sizes from XANES data, we were able to follow
the support-dependent in situ agglomeration of Cu clusters during the CO2

conversion reaction.
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These few examples illustrate the area of possible applications of our
method, including in situ studies of nanoparticle structure, studies of
diluted materials and materials in complex sample environments and/or on
strongly attenuating support. We envision that this approach will also be
indispensable for studies, where large series of spectra are generated and
need to be systematically processed, such as high-throughput studies, time-
resolved and/or spatially resolved studies of materials structure: note that
after the training of machine learning routine is completed, unlimited number
of experimental spectra can be processed within seconds. Finally, similar
approaches can be extended for interpretation of not only XANES data, but
other spectroscopic data as well. For example, we have already demonstrated
that similar ideas, as employed here for the analysis of XANES data, can
advance the analysis of EXAFS data as well.19,20 Together with existing
studies, where machine learning is used to assist in theoretical analysis of
structure-properties relationship in functional materials,21–24 these examples
demonstrate the high potential of data-science based approaches in materials
science applications.
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