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Abstract—Protein subcellular location prediction aims to
predict the location where a protein resides within a cell using
computational methods. Considering the main limitations of the
existing methods, we propose a hierarchical multi-label learning
model FHML for both single-location proteins and multi-location
proteins. The latent concepts are extracted through feature space
decomposition and label space decomposition under the nonnega-
tive data factorization framework. The extracted latent concepts
are used as the codebook to indirectly connect the protein fea-
tures to their annotations. We construct dual fuzzy hypergraphs
to capture the intrinsic high-order relations embedded in not
only feature space, but also label space. Finally, the subcellular
location annotation information is propagated from the labeled
proteins to the unlabeled proteins by performing dual fuzzy hy-
pergraph Laplacian regularization. The experimental results on
the six protein benchmark datasets demonstrate the superiority
of our proposed method by comparing it with the state-of-the-art
methods, and illustrate the benefit of exploiting both feature
correlations and label correlations.

Index Terms—Dictionary learning, hypergraph regularization,
multi-label learning, protein subcellular localization.

I. INTRODUCTION

P ROTEINS are basically important for organisms’ physio-
logical actions. Proteomics research is an attractive field

in the post-genomic era. The number of newly found proteins
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is dramatically increasing in the last two decades, however, in
which the instances whose functions we have known only cover
a small part of protein databases. Proteins perform their appro-
priate functions only when they are located in the correct subcel-
lular locations, which is a key functional characteristic of pro-
tein [1]. Thus protein subcellular location prediction is of great
significance to the functional analysis of proteins and drug dis-
covery. However, the traditional way to determine subcellular
location of proteins is performed by biochemical experimental
tests. As we know, it is time-consuming and costly. With the
explosion of newly found proteins, the gap between the new
proteins and the knowledge of their subcellular locations is be-
coming sharply wide. To tackle this problem, it is extraordi-
narily desirable to develop automated methods to predict sub-
cellular locations of proteins accurately.
In the past two decades, many efforts were paid in attempts

to predict proteins’ subcellular locations. The pioneering inves-
tigations, such as [2], [3] and [4], originally suggested the fea-
sibility of constructing computational models by using protein
composition sequence information for protein subcellular loca-
tion prediction. Motivated by these early works, several auto-
mated subcellular location predictors were then proposed for
various organisms’ proteins [5]–[8]. For the details of these
works, we shall refer readers to the two comprehensive reviews
[9], [10]. In recent years, this field has been attracting increasing
attentions, and fast advances have been published. These re-
searches mainly focus on how to effectively represent a protein
(e.g., feature extraction) and how to construct prediction models
(e.g., classifier construction).
For feature extraction, most researches extract the following

two types of discriminative feature representations: amino acid
sequence based and high-level information based. The former
only involves the amino acid sequences of proteins, which can
be further divided into three groups: 1) sorting-signal-based fea-
tures, 2) composition-based features, and 3) homology-based
features. The sorting-signal-based feature is an earlier type of
protein feature representation [9], [11]–[13], where N-terminal
sorting signals are used to discriminate proteins residing in dif-
ferent subcellular components. The composition-based method
statistically analyzes the composition information embedded in
the entire range of amino acid sequences, such as amino acid
compositions (AAC) [4], [14], amino acid pair compositions
(dipeptide) [15], gapped amino acid pair compositions [16],
and pseudo amino acid compositions (PseAAC) [7]. In par-
ticular, Chou’s pseudo amino acid composition is one of the
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most commonly-used feature representations, which is often
incorporated with other protein attributes, for example, phys-
ical chemistry properties [17] and evolutionary information
[18]. The homology-based feature is based on the assumption
that homologous sequences are more likely to have the same
subcellular location [19]–[21]. The high-level information
based methods construct features based on high-level semantic
annotations from external knowledge bases, such as texts
from PubMed titles and abstracts on proteins [22], and Gene
Ontology (GO) terms from annotation databases [23], [24].
For classifier construction, so far, many computational

methods, such as K-nearest neighbor [25], [26], support vector
machines [27], neural networks [28], [29], and hidden Markov
models [30], [31] were widely used for protein subcellular
location prediction. In particular, among these methods, the
support vector machine is shown to achieve better performance
in most cases. Furthermore, several novel machine learning
paradigms, such as ensemble learning [32], semi-supervised
learning [33], multi-task learning [34], transfer learning [35],
and boosting learning [36], have been applied for this field. As
a typical classification problem from the point view of pattern
recognition, some recognition techniques including dimension
reduction [37], feature fusion [38], and feature selection [39]
etc., have also been employed in this field, which substan-
tially improve the performance of protein subcellular location
prediction.
However, the main limitations of these existing intelligent

techniques could be summarized as the following two points.
• The traditional methods assume that each protein resides
at only one subcellular location, thus they handle a single-
label problem. However, we need to note that some pro-
teins may simultaneously exist in, or move between two
or more different subcellular locations. In fact, proteins of
this kind should draw our special attentions because they
may have some valuable biological functions for both basic
research and drug discovery [40], [41]. Besides, the re-
cent research [42] by Millar et al. has shown an increasing
number of proteins with multiple locations in the cell. So
it is necessary to take multi-location or multiplex proteins
into account when constructing the subcellular location
predictors.

• The traditional prediction models are usually constructed
based on the direct mapping from extracted features to an-
notation labels. In other words, thesemethods construct the
simple “flat” models. In fact, the hierarchical multi-layer
prediction models have been widely and effectively eval-
uated in many other biological pattern recognition fields
[43], [44]. Some recent researches indicate that a hierar-
chial structure is substantially beneficial for exploring re-
lations embedded in data features and annotation labels
of biological systems [45]–[47]. It would be promising to
consider a hierarchical prediction model for protein sub-
cellular location prediction.

For the first issue, in fact, there have been several studies
to address subcellular location prediction for multi-location
proteins recently [48]–[52]. Chou et al. proposed a series of
methods, such as iLoc-Euk [53], iLoc-Plant [54], iLoc-Virus
[55], iLoc-Hum [56], iLoc-Gpos [57], iLoc-Gneg [58] and
iLoc-Animal [59], to deal with the multi-location problem for

eukaryotic, plant, virus, human, Gram-positive, Gram-neg-
ative, and animal proteins, respectively. All these methods
follow the general steps including feature vectors construction,
multiple K-nearest neighbor learners training and prediction
results integration. In addition, some novel machine learning
paradigms, such as transfer learning [60], semi-supervised
learning [37], and binary relevance-based multi-label learning
[61], have been also employed to cope with the multi-location
problem. We shall refer readers to the recent comprehensive
review for the details of the multi-label prediction in molecular
biosystems [62]. Among the existing researches, most methods
directly transform the multi-label problem into multiple in-
dependent traditional single-label classification tasks. Some
studies suggest us that the straight solutions of this type are usu-
ally not optimal. Furthermore, the traditional methods ignore
the possible correlations embedded in multi-label problems. In
fact, each subcellular location is not isolated physiologically.
From our general experiences, there could be relations among
samples with different labels, among samples within the same
label, and among involved labels, which few studies considered
in subcellular location multi-label prediction. To better solve
this problem, in this work, we integrate intra-label similarity
and inter-label diversity, which involves both feature space and
label space, into the proposed multi-label learning scheme.
For the other issue, Nair and Rost have constructed a tree

structure called LOCtree by hand to mimic the cellular sorting
process for protein subcellular location prediction [63]. They
suggest that this simple hierarchical structure performs better
than those traditional “flat” methods. Pierleoni et al. proposed
a similar tree structure called BaCelLo to incorporate the rela-
tionships between subcellular locations, and placed more em-
phasis on performance balance among all the locations [64].
Both thesemethods predefined the hierarchical structures by uti-
lizing the priori knowledge of the localization mechanisms. As
pointed in [65], the problem of this predefined architecture is
that a prediction mistake at a top node could not be corrected
at lower nodes. Bulashevska and Eils constructed a hierarchical
prediction model through a learning process based on labeled
sequence data, where the relationships between subcellular lo-
cations were not explored explicitly [65]. The method of Yang
et al. explored the interdependences between subcellular loca-
tions and incorporated them into the learned hierarchical pre-
diction model [66]. We note that the inter-location relationships
were represented simply through the different pathways on the
prediction tree.
Towards this background, in this work, we deal with the task

of subcellular location prediction of multi-location proteins.
The proposed multi-label learning method is constructed on the
three-layer hierarchical model as Fig. 1. This model consists
of the three layers: feature layer, label layer and latent layer.
The latent layer acts as the link between the feature layer
and the label layer. The extracted latent concepts perform as
the dictionary items which are commonly used in document
analysis. Two normal graphs are constructed within the feature
layer and the label layer, respectively. In the feature layer, the
original features are decomposed onto the latent concepts. A
fuzzy hypergraph is used to regularize the consistency between
the original features and the intermediate latent codes. The
other hypergraph is constructed to regularize the consistency
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Fig. 1. The diagram of the proposed three-layer model.

between the annotation lists and the latent codes. Above all,
the annotation information is propagated from the labeled
proteins to the unlabeled proteins by the dual fuzzy hypergraph
regularized multi-label learning.
As pointed out in a recent comprehensive review [67] and

carried out in a series of follow-up publications [68]–[75], to es-
tablish a practical statistical predictor for a protein system, we
need to consider the following procedures: i) construct or select
a valid benchmark dataset to train and test the predictor; ii) for-
mulate the protein or biological samples with an effective math-
ematical expression or model that can truly reflect their intrinsic
correlation with the attribute to be predicted; iii) introduce or
develop a powerful algorithm (or engine) to operate the predic-
tion; iv) properly perform cross-validation tests to objectively
evaluate the anticipated accuracy of the predictor; v) establish
a user-friendly web-server for the predictor that is accessible to
the public. The following describes how to deal with these steps.
The remainder of this paper is organized as follows: in

Section II, the problem of subcellular location prediction for
multi-location proteins is represented formally and then a
multi-label prediction method is proposed. In Section III, we
introduce the six protein benchmark datasets, formulate a pro-
tein with the two types of effective mathematical expressions,
perform cross-validation tests on the six datasets to evaluate
the effectiveness of the proposed predictor, report and discuss
the experimental results. Finally, Section IV summarizes our
work and presents some future directions.

II. THE PROPOSED FHML METHOD

A. Problem Formulation

For a multi-label protein subcellular location prediction task,
consider a protein database of protein

sequences and an annotation vocabulary
of subcellular location labels. Each protein is represented
by its original feature vector for . Then
we have the protein dataset .
Among these proteins in the database, proteins are annotated
with one ormore subcellular location labels of the vocabulary ,
and other proteins are not annotated. Here, . Without
loss of generality, we assume that the first proteins are labeled
in advance by the label indicator matrix

. Each is a -dimensional vector. The value of 1 in-
dicates that the protein resides at the corresponding subcel-
lular location and the value of 0 indicates has no probability
to exist in that location. We denote the output real-valued label
score matrix as , and the final 0–1 label matrix as

.

B. Latent Encoding

Considering the limitation of the existing methods, we ex-
plore the intrinsic relations embedded both in feature space and
label space, i.e., feature correlation and label correlation. To
deal with this issue, we extract latent feature concepts for fea-
ture space and latent label concepts for label space. And then
based on the extracted latent concepts, we construct an indi-
vidual hypergraph in feature space and label space, respectively,
to capture the embedded intrinsic high-order relations. Then the
three-layer hierarchical model could be constructed to deal with
the multi-label problem.
At first, we decompose the original feature vectors onto

their latent feature concepts by dictionary learning under the
nonnegative matrix factorization framework (NMF) [76].
Motivated by the nonnegative matrix factorization originally
applied in face recognition, we know that the extracted latent
feature concepts are relevant to the parts of the original holistic
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features. Thus, the obtained new feature representation is
localized on the latent feature concepts. For the protein dataset

, formally, we reconstruct it by using the
linear combination of latent feature concepts as ,
where is the latent feature
concept basis matrix and is
the new feature representation over the latent basis. In this
work, the basis matrix and the coefficient matrix are both
constrained as nonnegative matrices. Each acts as a latent
feature concept and the nonnegative column vector is used
as the weight coefficient vector of the th protein belongs to
each latent feature concept. and could be obtained under
the dictionary learning framework as follows,

(1)

The constraint enforces each column to be a nor-
malized weight vector. Here, we call the new feature represen-
tation as latent codes.
In addition, we also decompose the annotation vectors onto

the latent label concepts. For the protein dataset , we denote
the corresponding subcellular location annotation matrix as .
For , we define the prediction model from the latent codes to
the annotation vectors as follows:

(2)

where and . Thus, the column vectors
are regarded as the latent label concepts, and is

used as the codebook in label space. Here, we assume ,
where and . Then, is the relation matrix
which shifts the latent components from feature space to label
space.
Herein, the can be predicted by . In addition,

the predicted labels of labeled data should be enforced to be
consistent with original labels. Mathematically, we should first
optimize the following objective function:

(3)

The last constraint normalizes each annotation
vector to avoid the scaling problem. Moreover, this normaliza-
tion constraint ensures that we can substitute the standard inner
for the cosine similarity.

C. Dual Fuzzy Hypergraph Laplacian Regularization

We can view the above decomposition in this way: the sample
is related to the latent feature concept with the weight
when , and the sample is unrelated to the latent feature
concept when . Herein, each protein sequence feature
vector could be reconstructed by some latent feature concepts;
on the other hand, each latent feature concept covers a subset of
samples. The acts as a membership degree of the protein to
the latent feature concept . The decomposition of label space

could be explained in the similar way. Naturally, the latent fea-
ture concept could viewed to be belonged to itself group com-
pletely. We define the latent code of the latent feature concept
as the column vector with 1 in -th entry and 0 elsewhere.
Then, the latent codes of the latent feature concepts can be de-
fine as , and the latent label concepts share the
same codes .
This viewpoint motivates us to employ a hypergraph to rep-

resent these relations, in which a hyperedge covers a subset of
vertices. We construct fuzzy hypergraphs in feature space and
label space, respectively. Each latent concept corresponds to
a hyperedge, and the instances (i.e., feature vectors in feature
space, annotation vectors in label space) connected to the la-
tent concept belong to its corresponding hyperedge. Here, the
instance is connected to the latent concept if its weight
is non-zero. In feature space, we construct a fuzzy hypergraph

, where is the set of vertices associ-
ated to protein features, is the set of hyperedges associated
to latent feature concepts and is the fuzzy degrees of vertices
to hyperedges. Here, let . In this way, all the protein
samples are organized by using latent feature concepts on the
fuzzy hypergraph. In label space, we also construct a fuzzy hy-
pergraph , where is the set of vertices
associated to protein annotation vectors, is the set of hyper-
edges associated to latent label concepts and is the fuzzy
degrees of vertices to hyperedges. Here, let . In this
way, all the protein annotations are also organized by the fuzzy
hypergraph.
To capture the embedded intrinsic correlation, we perform a

novel regularization on this fuzzy hypergraph. The regulariza-
tion is based on the assumption that the proteins in the same
feature hyperedge have similar latent codes and the similar la-
tent codes yield similar annotations. This type of intrinsic rela-
tions could be preserved by performing hypergraph Laplacian
regularization.
Following the star expansion algorithm, we transform the

initial fuzzy hypergraphs and into the two bipartite
graphs and with the adja-
cency matrices as and by introducing a new vertex for
each hyperedge. Then we could transform the dual fuzzy hyper-
graph Laplacian regularization into the traditional graph Lapla-
cian regularization. The vertex set consists of the initial ver-
tices correspond to protein feature vectors and the new vertices
correspond to latent feature concepts, i.e., .
The weight of each edge in is inherited from the fuzzy mem-
bership degree of each vertex in the hypergraph , i.e., the
weight of each edge is defined as the inner of the two joint ver-
tices. The similarity matrix , whose entry mea-
sures the similarity between a vertex pair , i.e.,

(4)

We define the degree matrix as , which is a diagonal matrix
with .

On the other hand, the vertex set of the bipartite graph in
label space is . The
pairwise similarity is measured by the inner for the pair
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. Thus, these pairwise similarity measures constitute the
following similarity matrix with to be the entry .

(5)

Thus, we can extend the optimization problem (1) by adding
a graph Laplacian regularization term as follows:

(6)

Define the Laplacian matrix .
In label space, the optimization problem (3) is extended by

adding a graph Laplacian regularization term as follows:

(7)

where the Laplacian matrix .

D. Multi-Label Learning Formulation

By integrating all of the above two folds, the semisupervised
multilabel learning problem for protein subcellular location pre-
diction is formulated as a dual fuzzy hypergraph regularized
nonnegative data factorization problem in the following form:

(8)

The parameters , , and are used to balance the con-
tribution of each objective terms to the solution.

E. Solution

The cost function is not convex with respect to , , and
together. Thus, it is not realistic to find the global minima.

However, the cost function is strictly convex with respect to
each matrix variable block respectively. So, here we adopt the
common method which is to iteratively optimize the objective
function by alternatively minimizing over one matrix variable
while keeping the other three blocks fixed. Together with the
strict convexity of the objective function, we can deduce that
each subproblem has a unique minimum. Here, for the nonnega-
tive constraint, we employ the multiplicative iterative algorithm
used for NMF. For the sum-to-one constraint, an effective tech-
nique in [77] is employed here. We use the matrices and
to take the place of and as inputs, which are defined as

(9)

where adjusts the effect of the sum-to-one constraint. The
larger forces each column of X or D to keep the sum-to-one
constraint better but slows down the convergence rate. Simi-
larly, We use the following equation to replace the original de-
composition assumption .

(10)

Here, we denote and .

After the real-valued label score matrix is obtained, we
need a cut-off threshold to transform the score matrix into the
0–1 matrix . Thus, we obtain the final predicted label subset
for each protein. In this work, we employ the S-Cut technique
to optimize the threshold based on the Hamming distance be-
tween the actual label matrix and the predicted label matrix
of the labeled proteins. The detailed steps is summarized in

Algorithm – FHML.

Algorithm — FHML

Input: protein dataset , annotated label matrix
Initialization: Randomly choose , , and as
nonnegative matrices.
A. For , do

1) For given , update
the latent codes as:

2) For given , update the
latent feature concept basis matrix as:

3) For given , update
the label ranking matrix as:

4) For given , update
the relation matrix as:

5) If ,
, and ,

then break.
end

B. Optimize the threshold and perform cut-off on
Output: The predicted label matrix

The above abbreviations are expanded as follows:
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III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Materials

We evaluate our proposed method on the six multi-location
protein benchmark datasets from the well-known package Cell-
Ploc 2.0 [78]. The protein subcellular location annotations in
these datasets are experimentally determined. These six datasets
cover eukaryotic, human, plant, gram-positive, gram-negative,
and virus cells which are denoted by eukaryote, human, plant,
gpos, gneg, and virus in the following discussions, respectively.
Each protein in the dataset has less than 25% sequence simi-
larity to any other in the same subcellular location group, which
makes it more reliable to compare our proposed method with
others. The datasets are obtained from the Online Supporting In-
formation in [78], where the more detailed description of these
six datasets can also be found.
To develop an effective predictor for a protein system, one

of the keys is to describe a protein mathematically in an effec-
tive formulation that can truly reflect their intrinsic correlation
with the target to be predicted [62]. For protein subcellular loca-
tion prediction, there aremany different representationmethods,
however, our focus is to show the benefit of our proposed hier-
archical multi-label learning method comparing with other ex-
isting multi-label methods for protein subcellular location pre-
diction.We only extract the two types of discriminative features,
i.e., PseAAC and PSSM-ACT, for a given protein sequence, and
then concatenate them serially as its original high-dimension
feature vectors. The detailed description of these two types of
features can be found in [38] and hence there is no need to re-
peat here. In this study, the PseAAC features of all proteins are
generated via the server at: http://www.csbio.sjtu.edu.cn/bioinf/
PseAAC/. In this work, the PseAAC and PSSM-ACT feature
vectors are both in 140-dimension.

B. Performance Measures

Performance evaluation in multi-label prediction is different
from that in traditional single-label prediction. As the case study
of [79] suggested, a multi-label system should be evaluated
by the two paradigms: example-based and label-based. The
example-based evaluation generates a score for each example
(protein) and averages later over all examples. The label-based
evaluation judges the quality of a multi-label system for each
label (subcellular location) and then averages over all labels.
Accordingly, we use example-based F-Measure and Accuracy,
and label-based Precision and Recall. The definitions of these
four measures are given as follows, following those presented
in [79]. The detailed explanation of definitions and intuitive
meanings of multi-label performance measures in molecular
biosystems can also be found in the recent comprehensive

review [48]. For a label (subcellular location) , a ground-truth
annotation binary vector denotes the membership of
all proteins. The -th “1” element of the vector indicates
the protein belongs to the location . Accordingly, the esti-
mated annotation by the predictor is denoted as a binary vector
. If the elements of the binary vectors are treated as logical

values, then , and can be written as:
, , and
. Meanwhile, for the -th example,

denotes its true label set and denotes its predicted label
set. Then the average label-based Precision and Recall, and ex-
ample-based F-Measure and Accuracy are defined as follows:

(11)

(12)

(13)

(14)

C. Experimental Settings

From the existing publications, the commonly-cited methods
able to deal with both single-location and multi-location
proteins in subcellular location prediction are multi-label
K-nearest neighbor (abbreviated as mKNN) in iLoc-Euk
[53] and multi-label support vector machine (abbreviated as
mSVM) in ML-PLoc [80]. As we know, the general KNN
and SVM are both popular methods and evaluated effectively
in many classification applications. In iLoc-Euk, Chou et al.
extended the cosine distance based KNN by introducing an
accumulation-layer scale into the multi-location version, which
is at present known as the best prediction method able to deal
with multi-location proteins when predicting protein subcel-
lular localization [53]. In ML-PLoc, Zhu et al. decomposed
the multi-label prediction problem into multiple independent
binary classification problem and each subproblem is solved
by a SVM classifier [80]. In this study, we choose these two
competitive predictors as the baseline methods to evaluate our
proposed method. Since our focus in this evaluation is only
on the discriminative ability of predictors, for the fairness
and reliability of comparison results, the input of mKNN
and mSVM is also the serially combination of PseAAC and
PSSM-ACT features as our proposed method dose. Although
iLoc-Euk web-server and ML-Ploc software package are pub-
licly available, the former only accepts Gene Ontology (GO)
representation or PSSM feature as its input and the latter only
uses PSSM feature to make prediction. Here, we construct
mKNN predictor following its original description [53], while
the proteins are represented as the combination of PseAAC and
PSSM-ACT features. The mSVM is extended for the same pro-
tein features as used in our method through using the core codes
provided by ML-PLoc package [81]. For mKNN, . For
mSVM, the parameters of SVM is set as and ,
which has been demonstrated to yield the best performance in
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TABLE I
PERFORMANCE COMPARISON OF THE DIFFERENT METHODS ON THE SIX DATASETS

the original study [80]. For our FHML method, the parameters
’s, the number of latent concepts , the parameter of the

sum-to-one constraint, and the convergence parameter are op-
timized by using 3-fold cross validation on the labeled set. The
’s are tuned from to . is tuned from 50 to 500.

We uniformly select twenty values for each parameter range
and select the highest one to finetune. Here, ,

, , and .
For , we need to consider the balance between the sum-to-one
constraint satisfaction and the convergence rate. We try the
’s from 0 to 100 with the Finally, we find that
when the system has a relatively better prediction
accuracy and an acceptable convergence rate. So, a relatively
small value is chosen in this work. For , the smaller
leads to a more exact solution but slows down the convergence.
We find that the smaller than is helpless for the further
significant improvement of the prediction accuracy but leads to
a larger time cost. So is chosen in our work.
In statistical prediction, for evaluating the effectiveness of a

predictor in practical application, the following three cross-val-
idation methods are commonly used: independent dataset test,
subsampling (e.g., K-fold cross validation) test, and jackknife
test. Among the three methods, the jackknife test is considered
as the most objective because it can always yield a unique re-
sult for a given benchmark dataset, as elucidated in [78] and
[67]. Accordingly, the jackknife test has been increasingly and
widely used to examine the performance of various prediction
methods [82]–[88]. However, to reduce the computational time,
we adopted the 10-fold cross-validation test in this study as
done by many investigators with SVM as a prediction engine.
As more detail, each 10-fold cross validation is repeated for
ten times, where all the proteins are randomly divided into 10
mutually exclusive parts with approximately equal size and ap-
proximately equal class distribution. The averaged results are
reported in this work.

D. Experimental Results

Table I illustrates the experimental results of the three com-
paredmethods on the sixmulti-location protein datasets in terms
of the four multi-label performance measures, where the best
result of each measure on each dataset is shown in bold face.
From this result, we can conclude the following observations.
1) mKNN and mSVM perform similarly, and both worse than
FHML on the six datasets in terms of the four measures. FHML
achieves the best averaged performance 62.2% for Precision,
59.7% for Recall, 87.4% for F-Measure and 85.2% for Accu-
racy on the six datasets. 2) On the eukaryote, human, and gneg
datasets, FHML performs better than those on the plant, gpos,
and virus datasets. FHML achieves the averaged performance
improvement 4.6% for Precision, 4.2% for Recall, 6.2% for
F-Measure and 4.7% for Accuracy on the former three datasets,
while 1.8% for Precision, 1.5% for Recall, 1.9% for F-Measure
and 1.9% for Accuracy on the latter three datasets.

E. Discussion

This experimental evaluation has shown the effectiveness of
the proposed fuzzy hypergraph regularized hierarchical multi-
label predictor. Generally, for a classification task, it becomes
relatively more difficult when more class labels are considered.
However, the superiority of FHML is more significant when the
dataset contains more training samples and covers more subcel-
lular locations. We notice that there are a larger number of pro-
teins and subcellular locations in eukaryote, human, and plant
datasets than the remaining three datasets. More informative
relations embedded in feature space, and more inter-label and
intra-label relations embedded in annotation label space can be
expected in the former. Therefore, our proposed FHML method
with exploiting correlations not only in feature space but also
in label space is more effective, while the mKNN and mSVM
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construct the flat prediction model directly from features to an-
notation labels without considering the correlations embedded
in feature space and label space, and thus it performs worse than
FHML, which confirms our intuition. This fact would suggest us
that collecting more proteins to construct an abundant training
dataset is necessary for a further development of protein subcel-
lular localization predictors building.

IV. CONCLUSION AND FUTURE WORK

In this work, we generate a hierarchical multi-label learning
model with dual fuzzy hypergraph regularization. We explore
the intrinsic relations both in feature space and label space. The
experimental results have shown that our method outperforms
the two state-of-the-art multi-location protein subcellular loca-
tion prediction methods in terms of the four measures.
In this study, we only choose PseAAC and PSSM-ACT as

our input features. In fact, in further work, other powerful pro-
tein feature extraction approaches, such as GO representation,
are expected to improve the prediction performance of our pro-
posed method. Furthermore, kinds of relations have been ex-
ploited with the help of the three-layer structure, while the re-
lations within each individual layer are considered linearly. In
fact, the more complex relation structure among subcellular lo-
cations would be explored in future work with the help of the bi-
ological evolutionary background. Since user-friendly and pub-
licly accessible web-servers represent the future direction for
developing practically more useful models, simulated methods,
or predictors [89], [90], and provide convenient tools for bi-
ology and drug researchers, we will make efforts in our future
work to provide a web-server for the method presented in this
paper.
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