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Improved Deep Hashing With Soft Pairwise
Similarity for Multi-Label Image Retrieval

Zheng Zhang, Qin Zou
and Song Wang

Abstract—Hash coding has been widely used in the approximate
nearest neighbor search for large-scale image retrieval. Recently,
many deep hashing methods have been proposed and shown
largely improved performance over traditional feature-learning
methods. Most of these methods examine the pairwise similarity
on the semantic-level labels, where the pairwise similarity is
generally defined in a hard-assignment way. That is, the pairwise
similarity is “1” if they share no less than one class label and
“0” if they do not share any. However, such similarity definition
cannot reflect the similarity ranking for pairwise images that
hold multiple labels. In this paper, an improved deep hashing
method is proposed to enhance the ability of multi-label image
retrieval. We introduce a pairwise quantified similarity calculated
on the normalized semantic labels. Based on this, we divide the
pairwise similarity into two situations—*hard similarity’’ and “soft
similarity,” where cross-entropy loss and mean square error loss
are adapted respectively for more robust feature learning and hash
coding. Experiments on four popular datasets demonstrate that the
proposed method outperforms the competing methods and achieves
the state-of-the-art performance in multi-label image retrieval.

Index Terms—Image retrieval, convolutional neural network,
semantic label, pairwise similarity, deep hashing.

I. INTRODUCTION

ITH the popular use of smartphone cameras, the amount
W of image data has been rapidly increasing, which calls
for more efficient and accurate image retrieval. Generally, image
retrieval is based on the approximate nearest neighbor search [1]
and an image-retrieval system is often built on hashing [2]. In
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hashing methods, high dimensional data are transformed into
compact binary codes and similar binary codes are expected to
generate for similar dataitems. Due to the encouraging efficiency
in both speed and storage, a number of hashing methods have
been proposed in the past decade [3]-[14].

Generally, the existing hashing methods can be divided into
two categories: unsupervised methods and supervised methods.
The unsupervised methods use unlabeled data to generate hash
functions. They focus on preserving the distance similarity in the
Hamming space as in the feature space. The supervised meth-
ods incorporate human-interactive annotations, e.g., pairwise
similarities of semantic labels, into the learning process to im-
prove the quality of hashing, and often outperform the unsuper-
vised methods. In the past five years, inspired by the success of
deep neural networks that show superior feature-representation
power in image classification [15]-[18], object detection [19],
face recognition [20], and many other vision tasks [21]-[23],
many supervised hashing methods based on deep neural net-
works were developed for image abstraction and hash-code
learning [24]-[36]. These so called deep hashing methods have
achieved the state-of-the-art performance on several popular
benchmark datasets.

While these supervised deep hashing methods have produced
impressive improvement in image retrieval, to the best of our
knowledge, they only examine the similarity of pairwise images
using the semantic-level labels, and define the similarity in a
coarse way. That is, the similarity of pairwise images is ‘1’ if
they share at least one object class and ‘0’ (or ‘—1’) if they do
not share any object class. However, such similarity definition
cannot reflect the fine-grained similarity when the pairwise im-
ages both have multiple labels. An illustrative example is shown
in Fig. 1 where the images in (a), (b) and (c) share the same
class label ‘sky’ and each pair of them are taken as similar in
the context of image retrieval. However, as the images in (a)
and (b) share three class labels, i.e., ‘sky’, ‘bridge’, and ‘water’,
the similarity between them should be ranked higher than that
between (a) and (c) which have only one class label in common.
It can be easily observed that, the traditional coarse similarity
definition does not take the multi-label information into account
and cannot rank the similarity for images with multiple class
labels.

To solve this problem, we present a soft definition for the pair-
wise similarity with regarding to the semantic labels each image
holds. Specifically, the pairwise similarity is quantified into a
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Fig. 1. Some examples of the multi-label images. Since the images in (a) and
(b) share more class labels, the similarity between them is supposed to be higher
than that between (a) and (c). However, in the traditional pairwise-similarity
definition, the similarities between them are the same.

percentage using the normalized semantic labels. Based on the
quantified similarity, we propose a deep method to improve the
retrieval quality for multi-label image retrieval. For convenience,
we abbreviate this improved deep hashing network as IDHN in
the following description. Specifically, we divide the quantified
similarity into two situations: one is ‘hard similarity’, which
means a pair of images share either all object types or none;
another is ‘soft similarity’, which means a pair of images share
some object classes, but not all. For robustness and practicabil-
ity, we construct cross entropy loss for ‘hard similarity” situation
and mean square error loss for ‘soft similarity’, for preserving
the similarity of an image pair in hash space converging to their
fine-grained semantic similarity in form of normalized labels.
We evaluate the proposed deep hashing method on four popu-
lar multi-label image datasets and obtain significantly improved
performance over the state-of-the-art hashing methods in image
retrieval. The contributions of this work lie in three-fold:

® We propose a soft definition for the pairwise similarity by
quantifying it into a percentage using the normalized se-
mantic labels. To the best of our knowledge, IDHN is the
first deep hashing method that directly uses pairwise quan-
tified similarity which can reflect the fine-grained simi-
larity between a pair of multi-label images for supervised
learning.

e Wedivide the pairwise similarity into two situations — ‘hard
similarity” and ‘soft similarity’, and a joint loss-function of
cross-entropy loss and mean square error loss are adapted
for learning efficient, robust hash codes, and preserving
the fine-grained semantic similarity based on the quantified
similarity.

e Experiments have shown that the proposed method out-
performs current state-of-the-art methods on four datasets
in image retrieval and has good extensibility to deeper net-
work architecture, which demonstrates the effectiveness of
the proposed method.

The rest of this paper is organized as follows: Section II
briefly reviews the related work. Section III describes the pro-
posed quantified similarity deep hashing method which gen-
erates high-quality hash codes in a supervised learning manner.
Section IV demonstrates the effectiveness of the proposed model
by extensive experiments on four popular benchmark datasets,
and Section V concludes our work.

II. RELATED WORK

In the past two decades, many hashing methods have been pro-
posed for approximate nearest neighbor search in the large-scale
image retrieval. Hashing-based methods transform high dimen-
sional data into compact binary codes with a fixed number of bits
and generate similar binary codes for similar data items, which
can greatly reduces the storage and calculation consumption.
Generally, the existing hashing methods can be divided into two
categories: unsupervised methods and supervised methods.

Unsupervised Methods: The unsupervised hashing methods
learn hash functions to preserve the similarity distance in the
Hamming space as in the feature space. Locality-Sensitive Hash-
ing (LSH) [37] is one of the most well-known representative.
LSH aims to maximize the probability that the similar items
will be mapped to the same buckets. Spectral Hashing (SH) [3]
and [38] consider hash encoding as a spectral graph partition-
ing problem, and learn a nonlinear mapping to preserve seman-
tic similarity of the original data in the Hamming space. Itera-
tive Quantization (ITQ) [8] searches for an orthogonal matrix
by alternating optimization to learn the hash functions. Sparse
Product Quantization (SPQ) [39] encodes the high-dimensional
feature vectors into sparse representation by decomposing the
feature space into a Cartesian product of low-dimensional sub-
spaces and quantizing each subspace via K-means clustering,
and the sparse representations are optimized by minimizing their
quantization errors. [40] proposes to learn compact hash code by
computing a sort of soft assignment within the k-means frame-
work, which is called “multi-k-means”, to void the expensive
memory and computing requirements. Latent Semantic Minimal
Hashing (LSMH) [41] refines latent semantic feature embedding
in the image feature to refine original feature based on matrix
decomposition, and a minimum encoding loss is combined with
latent semantic feature learning process simultaneously to get
discriminative obtained binary codes.

Supervised Methods: The supervised hashing methods use su-
pervised information to learn compact hash codes, which usually
achieve superior performance compared with the unsupervised
methods. Binary Reconstruction Embedding (BRE) [4] con-
structs hash functions by minimizing the squared error loss be-
tween the original feature distances and the reconstructed Ham-
ming distances. Semi-supervised hashing (SSH) [5] combines
the characteristics of the labeled and unlabeled data to learning
hash functions, where the supervised term tries to minimize the
empirical error on the labeled data and the unsupervised term
pursuits effective regularization by maximizing the variance and
independence of hash bits over the whole data. Minimal Loss
Hashing (MLH) [6] learns hash functions based on structural
prediction with latent variables using a hinge-like loss function.
Supervised Hashing with Kernels (KSH) [7] is a kernel based
method which learns compact binary codes by maximizing the
separability between similar and dissimilar pairs in the Ham-
ming space. Online Hashing [42] is also a hot research area in
image retrieval. [43] proposes an online multiple kernel learning
method, which aims to find the optimal combination of multiple
kernels for similarity learning, and [44] improves the online
multi-kernel learning with semi-supervised way, which utilizes
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supervision information to estimate the labels of the unlabeled
images by introducing classification confidence that is also in-
structive to select the reliably labeled images for training.

In the last few years, approaches built on deep neural net-
works have achieved state-of-the-art performance on many vi-
sion tasks [15]—[17] as comparing to traditional methods [45].
Inspired by the powerful representation ability of deep neural
networks, some deep hashing methods have been proposed,
which show great progress compared with traditional hand-
crafted feature based methods. A simple way to deep hashing
learning is thresholding high level feature directly, the typical
methods is DLBHC [46], which learns hash-like representations
by inserting a latent hash layer before the last classification layer
in AlexNet [15]. While the network is fine-tuned well on classi-
fication task, the feature of latent hash layer is considered to be
discriminative, which indeed presents better performance than
hand-crafted feature. CNNH [24] was proposed as a two-stage
hashing method, which decomposes the hash learning process
into a stage of learning approximate hash codes, and followed by
a stage of deep network fine-tune to learn the image features and
hash functions. DNNH [26] improves the two-stage CNNH in
both the image representations and hash coding by using a joint
learning process. DNNH and DSRCH [27] use image triplets
as the input of deep network, which generate hash codes by
minimizing the triplet ranking loss. Since the pairwise similar-
ity is more straightforward than the triplet similarity, most of
the latest deep hashing networks used pairwise labels for super-
vised hashing and further improved the performance of image
retrieval, e.g., DHN [28], DQN [29] and DSH [30] etc. Hash-
Net [31] proposes a deep hashing method to learn binary hash
codes from imbalanced similarity data by continuation method
with convergence guarantees.

Since the above-mentioned deep hashing methods are not
designed for multi-label image retrieval, the fine-grained simi-
larity of multi-label images are always neglected with coarse-
grained definition between pair images. For multi-label retrieval,
DSRH [25] tries to learn hash function by utilizing the ranking
information of multi-level similarity, and proposes a surrogate
losses to solve the optimization problem of ranking measures.
IAH [47] focuses on learning instance-aware image representa-
tions and using the weighted triplet loss to preserve similarity
ranking for multi-label images. However, the weighted triplet
loss functions adapted by DSRH [25] and TAH [47] do not en-
force direct restriction to learn fine-grained multilevel seman-
tic similarity, since they are focusing on preserving the correct
ranking of images according to their similarity degrees to the
queries, which make it a room for improvement on the accu-
racies of top returned images. Based on this, DMSSPH [48]
tries to construct hash functions to maximize the discriminabil-
ity of the output space to preserve multilevel similarity between
multi-label images. Althought DMSSPH [48] has utilized the
fine-grained multilevel semantic similarity for pairwise similar-
ity learning, there still are spaces for further exploration. A novel
and effective method TALR was proposed in [36], which con-
sidered tied rankings on integer-valued Hamming distance and
directly optimized the ranking-based evaluation metrics Mean
Average Precision (MAP) [49] and Normalized Discounted
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Cumulative Gains (NDCG) [50]. It achieved high performance
in several benchmark datasets. In [51], two new protocols were
presented for the evaluation of supervised hashing methods, un-
der the context of transfer learning.

In this work, we study to improve the hashing quality by
exploring the diversities of pairwise semantic similarity on
the multi-label dataset. Specifically, we propose to define the
fine-grained pairwise similarity in the form of continuous value,
and according to this definition, we divide the pairwise similar-
ity into two situations and construct a joint pairwise loss func-
tion to perform simultaneous feature learning and hash-code
generating.

III. IMPROVED DEEP HASHING NETWORKS
A. Problem Definition

Given a training set of N images I = {I1,I2,...,Iy} and
a pairwise similarity matrix S = {s;;[¢,7 =1,2,..., N}, the
goal of hash learning for images is to learn a mapping F' : I —
{—=1,1}9, so that an input image I; can be encoded into a g-bit
binary code F'(I;), with the similarities of images being pre-
served. The similarity label s;; is usually defined as s;; = 1if I;
and I; have semantic label, i.e., object class label, in common
and s;; = 0 if I; and I; do not share any semantic label. As
discussed in the introduction, this definitions does not take the
multi-label information into account and cannot rank the sim-
ilarity for images with multiple class labels. In our design, the
pairwise similarity is quantified into percentages and the simi-
larity value s;; is defined as the cosine distance of pairwise label
vectors:
_ ) 0

5, = i)
T

where [; and I; denote the semantic label vector of image /; and
I;, respectively, and (/;, [ j> calculates the inner product. This co-
sine distance has been widely adopted in retrieval system, but it
is always used to measure similarity of the feature vectors [29].
To the best of our knowledge, we are the first to use the co-
sine distance to quantify fine-grained semantic similarity of pair
images.

According to Eq. (1), the similarity of pairwise images can be
passed into three states: completely similar, partially similar, and
dissimilar. For approximate nearest neighbor search, we demand
that the binary codes B = {b; } ; should preserve the similarity
in S. To be specific, given a pair of binary codes b; and b;, if
;5 = 0 which means pairwise images I; and I; do not share any
object class, the Hamming distance between b; and b; should be
large, i.e., be close to g in the g-bit hash coding case; if s;; = 1,
which means the pairwise images I; and I; have the same class
labels, we expect the Hamming distance to be zero; otherwise,
the binary codes b; and b; should have a suitable Hamming
distance complying with the soft definition of similarity s;;.

As aconclusion, we define the completely similar and dissim-
ilar situation as ‘hard similarity’, which can be seen as equiva-
lent to the similarity definition for single label images. Besides
of these ‘hard similarity’ situations, the similarity between a pair
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An overview of the proposed deep hashing learning method. The top frame shows the deep architecture of neural network that produces the hash codes.

The bottom frame shows the processing of pairwise quantified similarity and loss function construction. Cross entropy loss and mean square error loss are combined
to preserving fine-grained pairwise similarity and a quantization loss is adapted to impose constraints for compact hash coding.

of images is more fine and complicated, which we define as ‘soft
similarity’.

Figure 2 shows the pipeline of the proposed deep hash-
ing network for supervised hash-code learning. The proposed
method accepts input images in a pairwise form (I;, I, s;5)
and processes them through the deep representation learning
and hash coding. It includes a sub-network with multiple con-
volution/pooling layers to perform image abstraction, fully-
connected layer to approximate optimal dimension-reduced rep-
resentation, and hash layer to generate ¢-bits hash codes. In
this framework, a pairwise similarity loss is introduced for
similarity-preserving learning, and a quantization loss is used
to control the quality of hashing. The pairwise similarity loss
consists of two parts—the cross entropy loss and the square error
loss. Details will be introduced in the following of this section.

B. Deep Network Architecture

Since many deep hashing methods [28], [29], [31], [48] have
adapted AlexNet [15] as base network, without loss of generality,
we also adopt the AlexNet as our base network. AlexNet com-
prises of five convolutional layers conv1 - convd and three fully
connected layers fc6 — fc8. After each hidden layer, a nonlin-
ear mapping z! = a!(W!zl=" + ) is learned by the activation
function a!, where zi is the [-th layer feature representation for
the original input, W' and b’ are the weight and bias parameters
of the [-th layer. We replace the f¢8 layer of the softmax classi-
fier in the original AlexNet with a new fully-connected hashing
layer with ¢ hidden nodes, which converts the learned deep fea-
tures into a low-dimensional hash codes. In order to realize hash

encoding, we introduce an activation function a'(z) = T to
map the output of fc8 to be within (—1, 1). Notice that, our
method can be easily extended to other deep networks, such as
GoogLeNet [17] and VGG19 [16], we will conduct experiments
on these two classical networks to demonstrate the extensibility
of our method.

C. Hash-Code Learning

For efficient nearest neighbor search, the semantic similarity
of original images should be preserved in the Hamming space.
In the following, we will discuss our proposed hashing methods
with reference to ‘hard similarity’ and ‘soft similarity’ situation,
respectively.

1) Hard Similarity: In these situations, according to the
quantized pairwise similarity calculated by Eq. (1), the simi-
larity of pairwise images s;; can only get value O or 1, which is
identical to the similarity definition in previous deep pair hash-
ing methods [28], [30]. Given the hash codes B of all images
and the pairwise similarity relation Sj, = {s;; }, the conditional
probability p(s;;|B) of s;; can be defined as follows:

U(Qi')a Sij = 17
p(si;|B) = ’ ’ )
].—O'(Qij), Sij :0,

where o(x) = 1—1-% is the sigmoid function, which we use to
transform the Hamming distance into a kind of measure of sim-
ilarity. Previous works have shown that the inner product (-, -) is
a good metric of the Hamming distance to quantify the pairwise
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similarity [28], [29]. In this work, we construct an inner product
Qij = (bi, bj) = b bj.

Here, we adapt negative log-likelihood as cost function to
measure the pairwise similarity loss, as formulated by Eq. (3),

Ly=— > log(p(si;|B))
sijGSh
== 3 (silog(o () + (1 = si7)log(1 — o(92)).
54;€5n (3)

Then, substituting the sigmoid function o (2;;) with HE%%,
we get
£1 = Z (lOg(]. + 69”) - sijQij)~ (4)

8i;€Sh

2) Soft Similarity: In this situation, the pairwise similarities
defined by Eq. (1) are continuous value, we apply mean square
error function to preserve the similarity of hash codes to fit the
soft similarity. Thus, the pairwise similarity loss can be defined

as:
2

Ly = :

2.

SrijESs

As the inner product (b;,b;) is within [—¢, ¢], the value of
W will be non-negative and be within [0, ¢], which has
a same value range as s;; - q.

Although the cross entropy loss can also be used to measure
the similarity error in the soft similarity, the mean square error
loss shows better performance when multi-label images have
more complicated semantic relation and more shared labels. We
will discuss this in the experiments.

3) Joint Learning: For simultaneous learning of these two
cases and make an unified form, we use M;; to mark the two
cases, where M;; = 1 denotes the ‘hard similarity’ case, and
M;; = 0 denotes ‘soft similarity’ case. Hence, the pairwise sim-
ilarity loss is rewritten as:

L= Y [My(log(l+e™) —s;0)

si; €S
(bi,b;) +q >2
+y-(1— My (—i»- :

where 7y is a weight parameter to make a tradeoff between the
cross entropy loss and mean square error loss.

It is challenging to directly optimize Eq. (6), because the bi-
nary constraint b; € {—1, 1}7 requires thresholding the network
outputs, which may result in the vanishing-gradient problem in
back propagation during the training procedure. Following pre-
vious works [2], [28], [30], we apply the continuous relaxation
to solve this problem. We use the output of deep hashing network
u as a substitute for binary code b. €;; is redefined as cul u;,
where « is a positive hyper-parameter to control the constraint
bandwidth. Since the network output is not the binary codes, we
use a pairwise quantization loss to encourage the network output
to be close to standard binary codes. The pairwise quantization
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loss is defined as

Q=" (Il = Ul + lws| = 1), Q)
ijeN
where 1 is a vector of all ones, || - || is the L1-norm of the vector,

| - | is the element-wise absolute value operation. By integrating
the pairwise similarity loss and pairwise quantization loss, the
final cost loss is defined as

C=L+20Q, ®)

where A is a weight coefficient for controlling the quantization
loss.

D. Learning Algorithm

During the training process, the standard back-propagation
algorithm with mini-batch gradient descent method is used to
optimize the pairwise loss function. By combining Eq. (6) and
Eq. (7), we rewrite the optimization objective function C as
follows:

C=L+ArQ
= Z {Mij (log (1 + eo‘“iT“f) — Q- S uZTuj>
i,jEN
by (1 M) <uiTu;-+q . .q)z
+ - (Nual = Ll + [[ug| = 1)) ©)

In order to employ back propagation algorithm to optimize
the network parameters, we need to compute the derivative of
the objective function. The sub-gradients of Eq. (9) w.r.t. u;
(k-th unit of the network output u;) can be written as:

oL
= = a- Mi; Yy (0(Q) = 5ij) - s
8uzk ;
JeEN
+ye (1= My) > (ufwj+q—2-si5-q) - ugp,
jEN
(10)
and
1 -1 i
aQ _ P <’le1/€<0’ (]1)
Oug, —1, otherwise,

The gradient of w;; w.r.t. éfk (raw representations of hash
layer before activation) can be calculated by

N 1

8u7;k o
= Sgn(zik) ) W7

)
0%,

12)

where sgn(-) is an element-wise sign function and 2! =
wt zﬁ_l + b is the output of the I-th layer before activation.
The gradient of the network parameter W' is

oC oL 09\ Ou; ,_
T = 2 <aui“au,;> AR
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Since we have computed sub-gradients of the hash layer, the
rest of the back-propagation procedure can be done in the stan-
dard manner. Note that, after the learning procedure, we have
not obtained the corresponding binary codes of input images
yet. The network only generates approximate hash codes that
have values within (—1, 1). To finally get the hash codes and
evaluate the efficacy of the trained network, we need to treat the
test query data as input and forward propagate the network to
generate hash codes by using Eq. (14),

bir. = sgn(uik). (14)

In this way, we can train the deep neural network in an end-
to-end fashion, and any new input images can be encoded into
binary codes by the trained deep hashing model. Ranking the
distance of these binary hash codes in the Hamming space, we
can obtain an efficient image retrieval.

IV. EXPERIMENTS AND RESULTS
A. Datasets

To verify the performance of the proposed method, we com-
pare the proposed method with several baseline methods on
four widely used benchmark datasets, i.e., NUS-WIDE, Flickr,
VOC2012 and IAPRTC12.

NUS-WIDE [52] is a dataset containing 269,648 public web
images. It is a multi-label dataset in which each image is anno-
tated with one or more class labels from a total of 81 classes.
We follow the settings in [26], [53] to use the subset of images
associated with the 21 most frequent labels, where each label as-
sociates with at least 5,000 images, resulting in a total of 195,834
images. We resize the images of this subset to 227 x 227.

Flickr [54] is a dataset containing 25,000 images collected
from Flickr. Each image contains at least one of the 38 semantic
labels. We resize the images to 227 x227.

VOC2012 [55] is a widely used dataset for object detection
and segmentation, which contains 17,125 images, and each im-
age belongs to at least one of the 20 semantic labels. We resize
the images to 227 x 227.

TAPRTC12 [56] contains 20,000 images with segmentation
masks. Each region of segmentation has been assigned with a
label from a total of 276 pre-defined categories. We resize the
images to 227 x 227.

B. Implementation Details

For NUS-WIDE, we randomly select 100 images per class to
form a test query set of 2,100 images, and 500 images per class
to form the training set. For Flickr, VOC2012 and TAPRTC12,
we randomly select 1,000 images as the test query set, and 4,000
images as the train set. The remaining images in each of the four
datasets are taken as query database.

We compare our method with several state-of-the-art hash-
ing methods, including three unsupervised methods LSH [37],
SH [3] and ITQ [8], and two traditional supervised methods
MLH [6], KSH [7], and one classification-based deep hash-
ing methods DLBHC [46], three deep hashing methods with
coarse pairwise similarity definition—HashNet [31], DHN [28]

and DQN [29], and one state-of-the-art deep hashing methods
designed for multi-label image retrieval, DMSSPH [48]. No-
tice that, although the Jaccard coefficient based similarity has
been used as one multiplier of the weight for each training
pair in HashNet [31], the similarity of pairwise image is still
in a coarse way. To make the comparison more extensive, four
other typical deep hashing methods are also included, namely the
DPSH [34], DSRH [25], DSDH [32] and DTSH [33]. Based on
a coarse pairwise similarity, DPSH constructs the cross-entropy
loss and absolute quantization loss based on a coarse pairwise
similarity, and DSDH directly learns the discrete hash codes
with the auxiliary of classification mask. DTSH and DSRH are
two triplet-based methods which learn hash function from the
local triplet ranking relation [57].

We implement the proposed IDHN! by the TensorFlow
toolkit [58]. To make fair comparison, all deep hashing meth-
ods for comparison are reproduced by using the TensorFlow and
based on the bone net of AlexNet. For other traditional meth-
ods, we use the open-source codes released by [59], which are
implemented with MATLAB. We fine-tune the convolutional
layers convl—convb and fully-connected layers fc6—fc7 with
network weight parameters copied from the pre-trained model,
and train the hashing layer f¢8, all via back-propagation. We use
the Adam method for stochastic optimization with a mini-batch
size of 128, and the learning rate decay after each 500 iter-
ations with a decay rate of 0.5. For the deep learning based
methods, we directly use the image pixels as the input. For the
other traditional methods, i.e., LSH, SH, ITQ, MLH and KSH,
feature maps of the fully-connected layer fc7 are extracted us-
ing the pre-trained model and taken as the input without other
preprocessing.

C. Metrics

We evaluate the image retrieval quality using four widely-used
metrics: Average Cumulative Gains (ACG) [60], Normalized
Discounted Cumulative Gains (NDCG) [50], Mean Average
Precision (MAP) [49] and Weighted Mean Average Precision
(WAP) [25].

ACG represents the average number of shared labels between
the query image and the top n retrieved images. Given a query
image I, the ACG score of the top n retrieved images is calcu-
lated by

1 — ‘
ACGon = — Z Clq, 1), (15)

where n denotes the number of top retrieval images and C'(q, )
is the number of shared class labels between I, and I;.

NDCG is a popular evaluation metric in information retrieval.
Given a query image I, the DCG score of top n retrieved images
is defined as

DCGan = (16)

ICodes are available at https:/sites.google.com/site/qinzoucn/
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TABLE I
RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT PARAMETER
VALUE OF . NOTE THAT, ¢ DENOTES THE LENGTH OF THE HASH CODES

o NUS-WIDE Flickr VOC2012
24-bit | 48-bit 24-bit | 48-bit 24-bit 48-bit
1/q | 0.7141 | 0.7194 | 0.7878 | 0.8049 | 0.6185 | 0.6374
5/q | 0.7560 | 0.7681 | 0.8462 | 0.8515 | 0.6874 | 0.7032
10/g | 0.7498 | 0.7661 | 0.8425 | 0.8472 | 0.6886 | 0.7087
20/q | 0.7310 | 0.7528 | 0.8394 | 0.8492 | 0.6682 | 0.7014
1 0.7202 | 0.7079 | 0.8367 | 0.8428 | 0.6644 | 0.6674

Then, the normalized DCG (NDCG) score at the position n can
be calculated by NDCG@Qn = %, where Z,, is the max-
imum value of DC'G@n, which constrains the value of NDCG
in the range [0, 1].

MAP is the mean of average precision for each query, which
can be calculated by

Q

MAP = 1 > AP(g),

17
) an

q

where
1 - Np,(q)@i

AP(q) = Nrr(@)@n ; (TT(Q»@')T(;)) ;18
and Tr(g,4) € {0,1} is an indicator function that if I, and I;
share some class labels, Tr(q, i) = 1; otherwise T'r(g,i) = 0.
@ is the numbers of query sets and Nyp,.(¢)@i indicates the
number of relevant images w.r.t. the query image I, within the
top ¢ images.

The definition of WAP is similar with MAP. The only differ-
ence is that WAP computes the average ACG scores at each top
n retrieved image rather than average precision. WAP can be
calculated by

Q n
1 1 . .
WAP = 0 Eq m EZ (Tr(g,i) x ACGQi)
(19)

D. Results

1) Parameter Analysis: The parameter « is used to control
the range of inner product value after normalization. We notice
that the gradient of large absolute value is very small in the
sigmoid function, which may cause gradient vanishing. In order
to avoid this and accelerate the convergence, we employ the
parameter « and set its value according to the length ¢ of the
hash codes. Table I shows the results of the proposed method
by using different values of a. We set & = 2 to constrain the
result of {2;; to be within [—5, 5], which is relatively a suitable
range. v and X are the coefficient of mean-square-error loss and
quantization loss, respectively. We first study the influence of
A. It can be seen from Table II, it achieves the best results at
A = 0.1. Tt is because that a larger A will result in more discrete
but less similarity-preserved hash codes, and a smaller A will
make the quantization loss less effective. We also examine the
influence of +. It can be seen from Table III, v = %L Jeads to
the highest performance among all settings. By dividing g, the
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TABLE II
RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
PARAMETER VALUES OF A

A NUS-WIDE Flickr VOC2012
24-bit 48-bit 24-bit 48-bit 24-bit 48-bit
0 0.7259 | 0.7224 | 0.8020 | 0.7731 | 0.6393 | 0.6934
0.01 | 0.7263 | 0.7241 | 0.7983 | 0.7719 | 0.6419 | 0.6890
0.1 0.7345 | 0.7298 | 0.8052 | 0.7756 | 0.6428 | 0.6954
1.0 | 0.6662 | 0.6743 | 0.7651 | 0.7628 | 0.6334 | 0.6525
10.0 | 0.5382 | 0.5731 | 0.6878 | 0.6952 | 0.6228 | 0.4624

TABLE III

RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
PARAMETER VALUE OF

NUS-WIDE Flickr VOC2012

v 24-bit | 48-bit 24-bit 48-bit 24-bit 48-bit

0 0.7227 | 0.7309 | 0.8398 | 0.8454 | 0.6582 | 0.6721
0.01/q | 0.7287 | 0.7542 | 0.8410 | 0.8501 | 0.6628 | 0.6779
0.1/7g | 0.7600 | 0.7692 | 0.8462 | 0.8515 | 0.6874 | 0.7032
1/q 0.7288 | 0.7275 | 0.8002 | 0.7757 | 0.6842 | 0.6933
10/q 0.6693 | 0.6685 | 0.7179 | 0.7194 | 0.6640 | 0.6677

TABLE IV

RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
NUMBERS OF BITS ON NUS-WIDE DATASET

Methods 12-bit 24-bit 36-bit | 48-bit
IDHN 0.7292 | 0.7585 | 0.7639 | 0.7692
DQN [29] 0.7106 | 0.7327 | 0.7454 | 0.7493
DHN [28] 0.7187 | 0.7399 | 0.7595 | 0.7637
DMSSPH [48] | 0.6713 | 0.6993 | 0.7173 | 0.7273
HashNet [4] 0.6429 | 0.6938 | 0.7371 | 0.7501
DLBHC [46] 0.5696 | 0.6160 | 0.6214 | 0.6351
KSH [7] 0.6556 | 0.6825 | 0.6934 | 0.7024
MLH [6] 0.5184 | 0.5319 | 0.5512 | 0.5458
SH [3] 0.4368 | 0.4412 | 0.4616 | 0.4596
ITQ [8] 0.5469 | 0.5666 | 0.5785 | 0.5876
LSH [37] 0.3854 | 0.4085 | 0.4452 | 0.4453
TABLE V

RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
NUMBERS OF BITS ON FLICKR DATASET

Methods 12-bit 24-bit 36-bit | 48-bit
IDHN 0.8327 | 0.8469 | 0.8490 | 0.8515
DOQN [29] 0.8092 | 0.8227 | 0.8298 | 0.8270
DHN [28] 0.8227 | 0.8393 | 0.8446 | 0.8471
DMSSPH [48] | 0.7800 | 0.8080 | 0.8096 | 0.8159
HashNet [4] 0.7909 | 0.8262 | 0.8414 | 0.8483
DLBHC [46] 0.7236 | 0.7566 | 0.7573 | 0.7761
KSH [7] 0.7907 | 0.8070 | 0.8141 | 0.8181
MLH [6] 0.7033 | 0.7073 | 0.7163 | 0.7103
SH [3] 0.6451 | 0.6512 | 0.6505 | 0.6463
ITQ [8] 0.6845 | 0.6950 | 0.6973 | 0.6978
LSH [37] 0.5968 | 0.6086 | 0.6265 | 0.6369

gradient of mean square error loss in Eq. (10) can be adaptively
adjusted within a suitable range. Too larger or too smaller a ~y
value will destroy the balance between the cross-entropy loss
and the mean-square-error loss.

2) Comparison With State-of-the-Art Methods: The results
of MAP on NUS-WIDE, Flickr and VOC2012 datasets are
shown from Table IV to VL. It can be observed that, the pro-
posed IDHN method substantially outperforms all the compar-
ison methods on these three datasets. Among the traditional
hashing methods, KSH obtains the best results. Compared with
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TABLE VI
RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
NUMBERS OF BITS ON VOC2012 DATASET

Methods 12-bit 24-bit 36-bit | 48-bit
IDHN 0.6561 | 0.6874 | 0.6991 | 0.7032
DQN [29] 0.6303 | 0.6564 | 0.6675 | 0.6716
DHN [28] 0.6445 | 0.6704 | 0.6829 | 0.6928
DMSSPH [48] | 0.6064 | 0.6298 | 0.6343 | 0.6420
HashNet [4] 0.6502 | 0.6809 | 0.6856 | 0.6871
DLBHC [46] 0.5284 | 0.5372 | 0.5895 | 0.6173
KSH [7] 0.5874 | 0.6088 | 0.6196 | 0.6209
MLH [6] 0.5074 | 0.5179 | 0.5305 | 0.5263
SH [3] 0.4465 | 0.4453 | 0.4493 | 0.4552
ITQ [8] 0.4966 | 0.5054 | 0.5110 | 0.5134
LSH [37] 0.3866 | 0.4039 | 0.4118 | 0.4222
TABLE VII

RESULTS OF MEAN AVERAGE PRECISION (MAP) FOR DIFFERENT
NUMBERS OF BITS ON IAPRTC-12 DATASET

Methods 12-bit 24-bit 36-bit | 48-bit
IDHN 0.5495 | 0.5697 | 0.5779 | 0.5859
DQN [29] 0.5409 | 0.5672 | 0.5728 | 0.5774
DHN [28] 0.5412 | 0.5672 | 0.5762 | 0.5781
DMSSPH [48] | 0.4412 | 0.4745 | 0.4877 | 0.4928
HashNet [4] 0.4912 | 0.5242 | 0.5472 | 0.5612
DLBHC [46] 0.3218 | 0.3977 | 0.4199 | 0.4418
KSH [7] 0.5004 | 0.5211 | 0.5313 | 0.5363
MLH [6] 0.4618 | 0.4725 | 0.4763 | 0.4791
SH [3] 0.3883 | 0.3793 | 0.3930 | 0.3905
ITQ [8] 0.4507 | 0.4628 | 0.4659 | 0.4700
LSH [37] 0.3497 | 0.3553 | 0.3712 | 0.3891

KSH, the proposed method IDHN achieves an improvement of
about 7.2%, 3.8% and 7.7% in average MAP for different bits
on NUS-WIDE, Flickr and VOC2012, respectively. It can also
be observed from Table IV to VI, the deep learning methods
have obtained largely improved performance over the three tra-
ditional methods. Compared with DMSSPH, a deep hashing
method designed for multi-label image retrieval, the proposed
IDHN achieves an improvement of about 5.0%, 4.1% and 5.7%
in average MAP on the three datasets, respectively. For other
three deep hashing methods with coarse similarity definition,
i.e., DQN, DHN and HashNet, high MAP values have been ob-
tained. However, compared with these three methods, IDHN still
holds a higher average MAP with significance, which is 2.0%,
2.2%, 2.9% higher than DQN, 0.9%, 0.5%, 1.3% higher than
DHN, and 4.8%, 1.8%, 1.0% higher than HashNet on the three
datasets, respectively. It indicates the effectiveness and the ad-
vantage of proposed fine pairwise similarity, which can preserve
more fine-grained semantic similarity than the coarse similarity.

We also evaluate the performance of these methods on
IAPRTCI12. The results in Table VII show that, the proposed
method achieves the best performance among all methods. The
number of labels in IAPRTC12 is 276, which is much larger than
NUS-WIDE’s 21, Flickr’s 38 and VOC2012’s 20. The above re-
sults simply indicate that the proposed method can be effective
in handling multi-label images with a small or large number of
labels.
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Fig.3. Some sample images. From top row to the bottom row are the samples
from NUS-WIDE, Flickr, and VOC2012, respectively. The labels have been
given for each image as provided by the datasets.

Figure 4 shows the ACG, NDCG, and precision curves of
compared hashing methods w.r.t. different numbers of top re-
turned images with 12, 24,36 and 48 bits on NUS-WIDE, respec-
tively. On these metrics, the advantage of the proposed method
is not great on 12 bits compared to deep hashing methods, DHN
and DMSSPH. It may be because that a shorter code is less effec-
tive in representing the semantic similarity of multi-label images
in a large-scale dataset. When the code length increases, the per-
formance of the proposed IDHN improves rapidly and shows ob-
vious advantage than other compared methods. DLBHC shows
the worse results among these deep hashing methods, since it
is essentially a classification task using the class label as su-
pervised information rather than retrieval task to preserve the
semantic similarity.

Similarly, Figure 5 and 6 show the ACG, NDCG and preci-
sion curves on the Flickr and VOC2012, respectively. It can
be seen that, the proposed method achieves the highest per-
formance on the two datasets. On Flickr, the proposed IDHN
obtains significantly higher performance than the other meth-
ods. On VOC2012, among the comparison methods, HashNet
achieves the most comparative results to IDHN, especially on
12 bits and 24 bits. However, when the hash code increases to
36 bits or 48 bits, the proposed IDHN holds an obvious higher
performance than HashNet.

According to the definition of MAP, pairwise images that
share at least one common object label will be considered as
relevant images, and no more comparisons of fine-grained se-
mantic relation between these images are included, which may
not stay in step with user demand in multi-label image retrieval.
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Fig. 4.
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Performance of difference methods on the VOC2012 dataset. From top to bottom, there are ACG, NDCG and precision curves w.r.t. different number of

top returned samples with hash codes of 12, 24, 36 and 48 bits, respectively.
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We hope that high-quality retrieval results should have as more
shared class labels as possible in the nearest retrieval image.
Therefore, we also use WAP to measure the average number of
shared class labels among these retrieved similar images. Fig-
ure 7 show the results of WAP for different numbers of bits. It
can be seen that, although the range of WAP on the three datasets
are very different, the WAPs of IDHN are stably higher than that
of the comparison methods.

We also compare the proposed method with another four deep
hashing methods, DPSH, DSDH, DSRH and DTSH. According
to the results in Table VIII, the proposed method IDHN out-
performs the two pairwise-similarity-based methods DPSH and

Number of bits

Number of bits

Comparison of the IDHN method and other compared methods on W A P@5000 results.

DSDH with a significant margin. It indicates that, the soft simi-
larity is helpful for learning high-quality hash codes. IDHN also
achieves more robust results than the two triplet-based methods
DSRH and DTSH on the four datasets at different code lengths.

3) Comparison With Different Settings: To justify the neces-
sary of using the soft similarity definition and joint loss func-
tion, we conduct some comparison experiments. Table IX shows
the results of MAP, WAP, ACG and NDCG metrics of the
IDHN and its modifications, respectively. IDHN-fine-ce and
IDHN-fine-mse are both trained under supervision of our pro-
posed pairwise quantified similarity, where the difference be-
tween them is that IDHN-fine-ce only uses the cross entropy loss
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TABLE VIII
RESULTS OF MAP AT DIFFERENT NUMBERS OF BITS ON FOUR DATASETS
Methods NUS-WIDE Flickr VOC2012 IAPRTCI12
’ 12-bit 24-bit 48-bit 12-bit 24-bit 48-bit 12-bit 24-bit 48-Dbit 12-bit 24-bit 48-bit
IDHN 0.7296 | 0.7586 | 0.7692 | 0.8327 | 0.8469 | 0.8515 | 0.6561 | 0.6845 | 0.7032 | 0.5495 | 0.5697 | 0.5859
DPSH [34] | 0.7088 | 0.7461 | 0.7606 | 0.8150 | 0.8369 | 0.8467 | 0.6123 | 0.6299 | 0.6461 | 0.5442 | 0.5548 | 0.5607
DSDH [32] | 0.6333 | 0.6918 | 0.7317 | 0.7637 | 0.7824 | 0.8195 | 0.5913 | 0.6343 | 0.6494 | 0.5120 | 0.5458 | 0.5620
DSRH [25] | 0.7029 | 0.7156 | 0.7321 | 0.8002 | 0.8140 | 0.8238 | 0.6518 | 0.6618 | 0.6675 | 0.5265 | 0.5397 | 0.5475
DTSH [33] | 0.6972 | 0.7132 | 0.7462 | 0.8174 | 0.8283 | 0.8413 | 0.6552 | 0.6749 | 0.6795 | 0.5274 | 0.5452 | 0.5539
TABLE IX
RESULTS OF MAP, WAP, ACG AND NDCG AT DIFFERENT NUMBERS OF BITS ON NUS-WIDE, FLICKR AND VOC2012 DATASETS
Methods \ NUS-WIDE [ Flickr [ VOC2012 \
; | 12-bit | 24-bit | 36-bit | 48-bit [ 12-bit [ 24-bit [ 36-bit [ 48-bit [ 12-bit [ 24-bit [ 36-bit [ 48-bit |
MAP
IDHN 0.7296 | 0.7586 | 0.7639 | 0.7692 | 0.8327 | 0.8469 | 0.8490 | 0.8515 | 0.6561 | 0.6874 | 0.6991 | 0.7032
IDHN-fine-ce 0.7237 | 0.7523 | 0.7601 | 0.7639 | 0.8252 | 0.8323 | 0.8406 | 0.8419 | 0.6603 | 0.6867 | 0.7022 | 0.7064
IDHN-fine-mse 0.7301 | 0.7553 | 0.7604 | 0.7641 | 0.8284 | 0.8373 | 0.8400 | 0.8439 | 0.6450 | 0.6712 | 0.6777 | 0.6803
IDHN-coarse-ce 0.7203 | 0.7413 | 0.7469 | 0.7598 | 0.8234 | 0.8342 | 0.8360 | 0.8401 | 0.6329 | 0.6630 | 0.6699 | 0.6709
IDHN-coarse-mse | 0.6801 | 0.6921 | 0.7086 | 0.7116 | 0.7975 | 0.8045 | 0.8360 | 0.8401 | 0.6097 | 0.6359 | 0.6376 | 0.6398
IDHN-GoogLeNet | 0.7512 | 0.7696 | 0.7738 | 0.7796 | 0.8552 | 0.8653 | 0.8668 | 0.8697 | 0.7499 | 0.7741 | 0.7841 | 0.7898
IDHN-VGG19 0.7638 | 0.7769 | 0.7851 | 0.7884 | 0.8746 | 0.8830 | 0.8834 | 0.8843 | 0.7706 0.7842 | 0.7926 | 0.8020
WAP
IDHN 22076 | 2.2832 | 2.3386 | 2.3509 | 1.2092 | 1.3022 | 1.3339 | 1.3506 | 0.6714 | 0.7048 | 0.7182 | 0.7237
IDHN-fine-ce 22085 | 2.2662 | 2.3049 | 2.3204 | 1.2573 | 1.2906 | 1.3120 | 1.3261 | 0.6783 | 0.7061 | 0.7223 | 0.7267
IDHN-fine-mse 22141 | 2.2666 | 2.2845 | 2.3038 1.2467 | 1.3052 | 1.3248 | 1.3342 | 0.6612 | 0.6882 | 0.6915 | 0.6981
IDHN-coarse-ce 2.1426 | 2.1918 | 22134 | 22317 | 1.1822 | 1.2348 | 1.2628 | 1.2954 | 0.6473 | 0.6787 | 0.6859 | 0.6869
IDHN-coarse-mse | 2.0046 | 2.0500 | 2.0592 | 2.0516 | 1.0523 | 1.0769 | 1.1198 | 1.1231 | 0.6235 | 0.6507 | 0.6521 | 0.6545
IDHN-GoogLeNet | 2.2922 | 2.3302 | 2.3771 2.3879 1.2687 | 1.3212 | 1.3364 | 1.3524 | 0.7699 | 0.7956 | 0.8061 | 0.8119
IDHN-VGG19 2.3422 | 2.4027 | 24357 | 2.4362 | 1.2882 | 1.3048 | 1.3405 | 1.3430 | 0.7907 | 0.8066 | 0.8160 | 0.8266
ACG
IDHN 2.0376 | 2.0775 | 2.0977 | 2.0919 | 1.1560 | 1.1942 | 1.2110 | 1.2135 | 0.5426 | 0.5555 | 0.5583 | 0.5586
IDHN-fine-ce 1.9838 | 2.0185 | 2.0362 | 2.0441 1.1498 | 1.1625 | 1.1750 | 1.1824 | 0.5483 | 0.5516 | 0.5563 | 0.5546
IDHN-fine-mse 2.0260 | 2.0503 | 2.0630 | 2.0680 | 1.1634 | 1.2003 | 1.2100 | 1.2118 | 0.5468 | 0.5507 | 0.5503 | 0.5517
IDHN-coarse-ce 1.9731 | 1.9859 | 2.0009 | 2.0033 1.1444 | 1.1770 | 1.1902 | 1.2035 | 0.5362 | 0.5432 | 0.5491 | 0.5501
IDHN-coarse-mse | 1.8735 | 1.8821 | 1.8836 | 1.8861 1.0202 | 1.0372 | 1.0753 | 1.0798 | 0.5251 | 0.5312 | 0.5321 | 0.5334
IDHN-GoogLeNet | 2.1277 | 2.1401 | 2.1827 | 2.1856 | 1.2021 | 1.2077 | 1.2163 | 1.2269 | 0.5702 | 0.5701 | 0.5733 | 0.5738
IDHN-VGG19 2.1575 | 2.2227 | 2.2436 2.2458 | 1.1988 | 1.2075 | 1.2268 | 1.2282 | 0.5740 | 0.5785 | 0.5767 | 0.5816
NDCG
IDHN 0.5542 | 0.5705 | 0.5795 | 0.5786 | 0.5240 | 0.5602 | 0.5716 | 0.5780 | 0.7218 | 0.7502 | 0.7604 | 0.7641
IDHN-fine-ce 0.5440 | 0.5591 | 0.5672 | 0.5699 | 0.5407 | 0.5545 | 0.5623 | 0.5678 | 0.7445 | 0.7598 | 0.7674 | 0.7667
IDHN-fine-mse 0.5504 | 0.5621 | 0.5662 | 0.5705 | 0.5339 | 0.5593 | 0.5663 | 0.5687 | 0.7233 | 0.7355 | 0.7393 | 0.7415
IDHN-coarse-ce 0.5408 | 0.5484 | 0.5531 | 0.5559 | 0.5102 | 0.5330 | 0.5440 | 0.5581 | 0.7006 | 0.7207 | 0.7257 | 0.7286
IDHN-coarse-mse | 0.5046 | 0.5095 | 0.5101 | 0.5108 | 0.4429 | 0.4527 | 0.4754 | 0.4795 | 0.6830 | 0.6855 | 0.6976 | 0.6989
IDHN-GoogLeNet | 0.5742 | 0.5801 | 0.5925 | 0.5984 | 0.5603 | 0.5738 | 0.5807 | 0.5876 | 0.7890 | 0.7972 8030 | 0.8050
IDHN-VGG19 0.5892 | 0.6161 | 0.6211 | 0.6238 | 0.5600 | 0.5692 | 0.5834 | 0.5845 | 0.7949 | 0.8082 | 0.8139 | 0.8201

and IDHN-fine-mse only uses mean square error loss. As a con-
trast, IDHN-coarse-ce and IDHN-coarse-mse are trained under
supervision of coarse pairwise similarity that is adapted by most
deep hashing methods at present. IDHN-coarse-ce only uses the
cross entropy loss and IDHN-coarse-mse only uses mean square
error loss.

Comparing IDHN-fine-ce with IDHN-coarse-ce, or IDHN-
fine-mse with IDHN-coarse-mse, we can observe that using the
pairwise quantified similarity as the supervised information can
achieve results with higher semantic similarity than that ob-
tained by the coarse similarity definition, whether adapting the
cross entropy loss or mean square error loss. To some extent,
the value of WAP and ACG can reflect the degree of shared la-
bels between multi-label images. That is, the larger the value
the larger the average number of shared labels over the whole
dataset. It also means that, there are more complex semantic
relation between images. Although IDHN-fine-ce has achieved
outstanding performance on VOC2102 dataset, it does not show
advantage on other two datasets — NUS-WIDE and Flickr, while
there are complicated and abundant semantic relation on these

two image datasets than VOC2012. It is interesting that with
more fine-grained similarity information, deep hashing model
using mean-square-error loss presents comparable performance
compared to deep hashing model using cross-entropy loss,
especially on dataset of complex semantic relations. The pro-
posed IDHN method combines the advantages of cross entropy
loss and mean square error loss, and shows sufficient pow-
erful and robust performance on the three multi-label image
datasets.

For fair comparison, all the above experiments are conducted
based on AlexNet. We also extend our method to other deep
network bases—GoogLeNet and VGG19, both of which achieve
more accurate results than AlexNet on the ImageNet com-
petition, to explore the extensibility of our hashing strategy.
We denote these two modifications as ‘IDHN-GoogleNet’
and ‘IDHN-VGG19’, respectively. From Table IX we can
see that, with more powerful network bases, IDHN achieves
improved performance on all these metrics, which indicates
a good transfer capability of the proposed deep hashing
strategy.
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Fig. 8.

Top 20 retrieved images of the proposed IDHN and five competing deep hashing methods using the Hamming ranking on 48-bit hash codes. The green

box indicates that the retrieved image contains all the object classes in the query image, the blue box indicates the retrieved image partially contains the target
classes, and the red box indicates the retrieved image does not contain any object classes in the query image.

4) Top Retrieval Results: Figure 8 shows some retrieval sam-
ples of six deep learning methods according to the ascending
Hamming ranking. We mark the retrieval image with green box
that includes all object classes in query image, blue box that
includes part of the object classes, and red box which does not
include any object classes in the query image. The first query
image contains two semantic labels: water and vehicle. We can
see that, among these six deep hashing methods, IDHN shows
the best suitability between the retrieval images and query im-
ages, since the IDHN has the least incorrect retrieval (marked
by red box) in top-20 retrieval results. The second query images
contains two semantic labels: building and sky. On the top-20
retrieval images of each method, the results of IDHN are more
similar to query images from the perspective of human vision.
The top-20 results of DHN, DMSSPH and DLBHC have incor-
rect retrieval results, and the top-20 results of DQN and HashNet
include some low similarity results, as denoted by the blue-box
images. The results show the advantage of the proposed method
for multi-label image retrieval.

V. CONCLUSION

In this paper, a novel deep hashing method was proposed
for multi-label image retrieval, in which a quantified similarity
definition was introduced to measure the fine-grained pairwise

similarity. Compared with the traditional pairwise similarity, this
fine-grained pairwise similarity can more effectively encode the
information of fine-grained multi-label images. Based on the
proposed pairwise similarity, a robust pairwise-similarity loss
combining the cross-entropy loss and the mean-square-error loss
was constructed for effective similarity-preserving learning. In
addition, a quantization loss was introduced to control the quality
of hashing. Extensive experiments on four multi-label datasets
demonstrated that, the proposed IDHN outperformed the com-
peting methods and achieved an effective feature learning and
hash-code learning in the multi-label image retrieval.
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