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Abstract—This paper introduces a new method to solve the
cross-domain recognition problem. Different from the traditional
domain adaption methods which rely on a global domain shift for
all classes between the source and target domains, the proposed
method is more flexible to capture individual class variations
across domains. By adopting a natural and widely used assump-
tion that the data samples from the same class should lay on
an intrinsic low-dimensional subspace, even if they come from
different domains, the proposed method circumvents the lim-
itation of the global domain shift, and solves the cross-domain
recognition by finding the joint subspaces of the source and target
domains. Specifically, given labeled samples in the source domain,
we construct a subspace for each of the classes. Then we con-
struct subspaces in the target domain, called anchor subspaces,
by collecting unlabeled samples that are close to each other and
are highly likely to belong to the same class. The corresponding
class label is then assigned by minimizing a cost function which
reflects the overlap and topological structure consistency between
subspaces across the source and target domains, and within the
anchor subspaces, respectively. We further combine the anchor
subspaces to the corresponding source subspaces to construct
the joint subspaces. Subsequently, one-versus-rest support vector
machine classifiers are trained using the data samples belonging
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to the same joint subspaces and applied to unlabeled data in
the target domain. We evaluate the proposed method on two
widely used datasets: 1) object recognition dataset for computer
vision tasks and 2) sentiment classification dataset for natural
language processing tasks. Comparison results demonstrate that
the proposed method outperforms the comparison methods on
both datasets.

Index Terms—Cross domain recognition, joint subspace,
unsupervised.

I. INTRODUCTION

MANY machine learning methods often assume that the
training data (labeled) and testing data (unlabeled) are

from the same feature space and follow similar distributions.
However, this assumption may not be true in many real
applications. Namely, the training data is obtained from one
domain, while the testing data come from a different domain.
As a visual example, Fig. 1 shows coffee-mug images col-
lected from four different domains [Amazon, Caltech, digital
single-lens reflex (DSLR), and Webcam], which present dif-
ferent image resolutions (Webcam versus DSLR), viewpoints
(Webcam versus Amazon), background complexities (Amazon
versus Caltech), and object layout patterns, etc.

On the other hand, the data samples also show different dis-
tributions in the feature space, as illustrated in Fig. 2. The 2-D
plots are the first two feature dimensions reduced from orig-
inal 800-D speeded up robust features (SURF) feature space
(described in Section IV-D), using principal component anal-
ysis (PCA). The first and the second rows of Fig. 2 show
the distributions of “monitor” and “projector” and “mouse”
and “mug” in different domains, respectively. It is clear to see
that the data samples from different domains have different
distributions. Moreover, the relations between two classes in
different domains are also different. Taking the second row of
Fig. 2 as an example, in Webcam domain (the last column), the
mug samples (green circles) are usually located at the top-right
side of the mouse ones (red circles); but in Amazon domain
(the first column), the mug samples (green circles) are usually
located at the left side of the mouse ones (red circles).

These domain differences lead to a dilemma that: 1) directly
applying the classifiers trained from one domain to another
may result in significant degraded performance [2] and
2) labeling data in each domain as training samples would
be very expensive, especially in large-scale applications. The
dilemma consequently poses the cross-domain recognition
problem, namely how to utilize the labeled data in a source
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Fig. 1. Sample images from four different domains: Amazon, Caltech, DSLR,
and Webcam.

domain to classify/recognize the unlabeled data in a target
domain.

To achieve cross-domain recognition, a number of domain
adaption (DA) methods have been developed to adapt the clas-
sifier from one domain to another, which can be considered
as a specific type of transfer learning [3]–[7]. The subspace-
based DA methods have been found to be very effective
to handle cross-domain problem [8]–[14]. They either con-
structed a set of intermediate subspaces for modeling the shifts
between domains [8], [9], [11], [13], or generated a domain-
invariant subspace in which the data from the source and target
domains can represent each other well [10], [12], [14]. All
these methods mentioned above utilize the data from a domain
all together to generate a single subspace for the domain. In
practice, however, the intrinsic feature shift of each class may
not be exactly the same. The existing methods can obtain a
global domain shift, but ignore the individual class difference
across domains.

To circumvent the limitation of the global domain shift,
we adopt a natural and widely used assumption that the
data samples from the same class should lay on an intrinsic
low-dimensional subspace, even if they come from different
domains [15]. This assumption is not only held on many com-
puter vision tasks, such as face recognition under varying
illumination [16] and handwritten digit recognition [17] but
also used as a human cognitive mechanism for visual object
recognition [18]. Note that this assumption does not mean
that the target data samples exactly lay on the intrinsic low-
dimensional subspace of the source samples, since different
domains show subspace shift [11]. Fig. 3 gives an toy illus-
tration of a joint subspace covering the source domain and
target domain for a specific class. The source and target sub-
spaces have the overlap bases which implicitly represents the
intrinsic characteristics of the considered class. They have their
own exclusive bases because of the domain shift, such as the
varying illumination or the change of the view perspective.

We also give an example to show the bases of subspaces
using the sparse-subspace representation [15] of the data.

Given N data samples X = {xi}N
i=1, each data sample can be

reconstructed by a sparse linear combination of other samples
based on the self-expressiveness property of the data. That is

min ‖C‖0 s.t. X = XC, diag(C) = 0 (1)

where cij is the coefficient of the sparse representation for
reconstructing the xi by xj. Therefore, the average value of ith
row of C, i.e., Ri = (1/N)

∑
j ‖cij‖, denotes the importance of

the ith data sample used for reconstructing other data samples.
We treat the ith data sample as one basis of the intrinsic low-
dimensional subspace of X, if Ri ≥ ε.

We consider the object “backpack” from Amazon dataset
as the source domain S (92 data samples) and the same
object from Caltech as the target domain T (151 data sam-
ples). Using the sparse-subspace representation of the union
dataset J = S ∪ T , we can obtain the bases of the joint
subspace. We treat the ith data sample in J as the overlap
bases if they are important for reconstructing the data sam-
ples both from S and T , i.e., (1/92)

∑92
j=1 ‖cij‖ ≥ ε and

(1/151)
∑243

j=93 ‖cij‖ ≥ ε, since the ith data sample belongs
to both domains. Fig. 4(a) and (b) shows the overlap bases of
the joint subspace in S and T , respectively. Fig. 4(c) and (d)
shows the bases of the source and target intrinsic subspaces,
respectively. The red bases are the same as the overlap ones,
therefore, the blue ones are the exclusive bases for their own
subspaces.

Based on the above assumption, we propose a new method
that solves the cross-domain recognition by finding the joint
subspaces of the source and target domains. Specifically, given
labeled samples in the source domain, we construct an intrinsic
subspace for each of the classes. Then we construct subspaces
in the target domain, called anchor subspaces, by collecting
unlabeled samples that are close to each other and high-likely
belong to the same class. The corresponding class label is
then assigned by minimizing a cost function which reflects
the overlap and topological structure consistency between sub-
spaces across the source and target domains, and within the
anchor subspaces, respectively. We further combine the anchor
subspaces to corresponding source subspaces to construct the
joint subspaces for each class. Subsequently, an support vec-
tor machine (SVM) classifier is trained by using the samples
in the joint subspace and applied to the unlabeled data in the
target domain for classification.

The contributions of this paper are as follows.
1) By assuming that the data samples from one specific

class, even though they come from different domains,
should lay on an intrinsic low-dimensional subspace, we
generate one joint subspace for each class independently.
Each joint subspace carries the information not only
about the intrinsic characteristics of the corresponding
class, but also about the specificity for each domain.

2) To construct the joint subspaces, we first generate
anchor subspaces in the target domain, assign labels
to them, and combine these anchor subspaces to the
corresponding source subspaces.

3) We propose a cost function that implicitly maximizes
the overlap between the source subspace and the tar-
get subspace for each class as well as maintaining the
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Fig. 2. Illustrations of sample distributions of different domains in feature space. The 2-D plots are the first two feature dimensions reduced from original
800-D SURF feature space (described in Section IV-D), using PCA. The first row are the distributions of monitor and projector in four domains. The second
row are the distributions of mouse and mug in four domains. Best viewed in color.

Fig. 3. Illustration of a joint subspace between the source and target domains
for a specific class. This joint subspace consists of overlap bases between
domains, which represent the intrinsic characteristics of this class implic-
itly, and exclusive bases of different domains, which represent the exclusive
characteristics for each domain.

(a)

(c)

(b)

(d)

Fig. 4. (a) and (b) Overlap bases of the joint subspace in the source and
target domains, respectively. (c) and (d) Bases of the source and target domain,
respectively. The red bases are the same as the overlap bases, while the blue
bases are the exclusive bases of their own subspaces. Best viewed in color.

topological structure in the target domain. We use the
principal angles as the subspace distances in the cost
function instead of the data-sample distances that were
usually used in previous methods.

Note that, in this paper, when we say the subspace of a set of
data samples, we do not explicitly get the bases for its intrinsic
low-dimensional subspace. Instead, we use the original data

samples to represent the intrinsic subspace implicitly. There
are two reasons that we directly use the original data.

1) There is no need to have the bases since we do not
project the original data to a new space. We only implic-
itly use the bases of the subspace when we calculate the
distance between subspaces in Section IV-B. Using the
original data avoids the additional computational cost,
such as calculating the bases and projection.

2) All the data samples used either for training or test-
ing should be in the same space. Therefore, we do not
project them into different subspaces.

The remainder of this paper is organized as follows. We
elaborate related works in Section II. Section III describes
the proposed method. Quantitative experimental results are
demonstrated in Section IV. Section V concludes this paper.

II. RELATED WORK

For the cross-domain recognition problem, domain adapta-
tion is the most closely related work which is known as a
type of fundamental methods in machine learning and com-
puter vision. Here, we give a brief review of this topic. Please
refer to [19] for a comprehensive survey.

The traditional DA algorithms can be categorized into two
types, i.e., (semi-)supervised domain adaptation and unsuper-
vised domain adaptation, based on the availability of labeled
data from the target domain. Both semisupervised and super-
vised DAs assume that the labeled data are available in the
target domain. There are relatively large number of labeled
data in the target domain for the supervised DA. For the
semisupervised DA, there are only a very few number of
labeled data available, motivated by the standard semisuper-
vised learning [20]–[24]. Daumé [25] proposed to map the data
from both source and target domains to a high-dimensional
feature space, and trained classifiers in this new feature space.
Saenko et al. [26] proposed a metric learning approach that can
adapt labeled data of few classes from the target domain to the
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unlabeled target classes. Kumar et al. [27] proposed a coreg-
ularization model that augments the feature space to jointly
model the source and target domains. Chen et al. [28] proposed
a cotraining-based domain adaptation method. They first train
an initial category model on samples from the source domain
and then use it for labeling samples from the target domain.
The category model is then updating using the newly labeled
target samples through cotraining. Pan et al. [29] analyzed the
transfer component that maps both domains on kernel space to
preserve some properties of domain-specific data distributions.
Duan et al. [30] proposed an SVM-based method which min-
imized the mismatches between source and target domains,
using both labeled and unlabeled data. Shekhar et al. [12]
proposed to learn a single dictionary to represent both source
and target domains. The work in [31] proposed to use a lin-
ear transformation to map features from the target domain
to the source domain and generate the classification model
trained on the source domain and target samples based on fea-
ture transformation. Motivated by the recent success of deep
learning, some hierarchical domain adaptation methods are
also proposed [32], which need large scale data to (pre-)train
the deep neural network model. Xiao and Guo [33] proposed
a semisupervised kernel matching-based domain adaptation
method that learns a prediction function on the source domain
while mapping the target samples to similar source samples by
matching the target kernel matrix to the source kernel matrix.

Unsupervised DA, on the other hand, does not use any label
information in the target domain, which is also considered as
more challenging and more useful in real-world applications.
Gopalan et al. [8], [34] constructed a set of intermediate sub-
spaces along the geodesic path that links the source and target
domains on the Grassmann manifold. Gong et al. [9] pro-
posed a geodesic flow kernel (GFK) to model shift between
the source and target domains. In [11], a new method was
proposed to construct the subspaces by gradually reducing the
reconstruction error of the target data instead of using the
manifold walking strategies. Rather than using the geodesic
path in [8] and [34], Caseiro et al. [35] proposed to com-
pute the spline curve along with the Grassmann manifold.
Jhuo et al. [10] learned a transformation so that the source
samples can be represented by target samples in a low-rank
way. Fernando et al. [36] proposed to learn a mapping func-
tion which aligns the sample representations from the source
and target domains. Tommasi and Caputo [37] proposed a
naive Bayes nearest neighbor-based domain adaptation algo-
rithm that iteratively learns a class metric while inducing
a large margin separation among classes for each sample.
Baktashmotlagh et al. [38] proposed to use the Riemannian
metric as a measure of distance between the distributions
of source and target domains. Long et al. [14] proposed to
learn a domain invariant representation by jointly performing
the feature matching and instance weighting. Cui et al. [13]
treated samples from each domain as one sample (i.e., covari-
ance matrices) on a Riemannian manifold, and then interpolate
some intermediate points along the geodesic path, which are
used to bridge the two domains.

The algorithm proposed in this paper is an unsupervised
cross-domain recognition method. It is different from the

traditional DA methods by constructing an intrinsic low-
dimensional joint subspace for each class independently. This
avoids the global domain shift limitation and captures individ-
ual domain variations for each class.

III. PROPOSED MODEL

A. Problem Setting

Suppose there are two sets of data samples, one from source
domain S , denoted as {xSi }NS

i=1 ∈ Rd×NS , and the other one
from target domain T , denoted as {xTi }NT

i=1 ∈ Rd×NT , where d
is the data dimension, NS and NT denote the number of data
samples in the source and target domains, respectively. The
labels of all data samples in the source domain, denoted as
YS = {ySi }NS

i=1 ∈ RC×NS , are known, where C is the number
of classes, ySi ∈ {0, 1}C is a C bit binary code of the ith data
sample in source domain. If this data sample belongs to class
j, the jth bit of ySi is 1 and all the other bits are 0. Our aim

is to estimate YT ∈ RC×NT , the labels of all the data samples
in the target domain.

B. Overview

The proposed algorithm aims to construct a set of joint sub-
spaces {MSS

i }C
i=1, which cover the source and target domains,

one for each of the C classes, and then train the classifiers
on the data samples belonging to these joint subspaces. As
shown in Fig. 3, since a joint subspace is constituted by a
source subspace and a target subspace, we need to construct
the source and target subspaces first. Hence, the proposed
algorithm consists of five steps.

1) Constructing Subspaces in Source Domain: We con-
struct a set of subspaces {MS

i }C
i=1, one for each class in the

source domain. As mentioned above, we do not care about how
to get a set of bases to represent a subspace. We implicitly con-
struct the intrinsic low-dimensional subspace for each class by
using original data samples, i.e., take all the data that belong
to this class. Hence, each source subspace MS

i = {xSj |xSj ∈Ci
},

where Ci denotes the ith class, illustrated in Fig. 5(a).
2) Constructing Anchor Subspaces in Target Domain: To

estimate the target subspace for each class, we construct a
number of anchor subspaces in the target domain, denoted as
{MT

i }K
i=1, as illustrated in Fig. 5(b). These anchor subspaces

are expected to: 1) carry the information of target exclusive
characteristics and 2) be compact. The data samples in the tar-
get domain naturally satisfy the first expectation. To satisfy the
second expectation, the data samples in one anchor subspace
should be from the same class, since the subspace constructed
by samples from different class is usually less compact than
the one constructed by samples from the same class. Thus, the
basic idea is to ensure that each anchor subspace only contains
data samples from a single class such that it can be combined
to a source subspace for constructing the joint subspace com-
pactly. Since the data in the target domain are unlabeled, we
construct the anchor subspaces by grouping target data sam-
ples with high similarities. This is motivated by the locality
principle—a data sample usually lies in close proximity to a
small number of samples from the same class [39].
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Fig. 5. Overview of the proposed model. (a) Subspaces for each class in
source domain. The bars with the same color denote the data samples of
one class. (b) Anchor subspaces construction. The points in target domain
are the data samples. Data samples in each circle denote a core subgroup
and they construct an anchor subspace as one row of black ellipses. (c) Joint
subspaces construction. The ellipses denote the data samples from anchor
subspaces (target domain). Best viewed in color.

3) Labeling the Anchor Subspaces: Since the joint sub-
spaces are constructed independently for each class, we assign
a label for each anchor subspace. For this purpose, we pro-
pose a cost function that reflects: 1) the cross-domain distance
between the anchor subspace and the corresponding source
subspaces and 2) the within-domain topological relation of the
anchor subspaces in the target domain. Shorter cross-domain
distance actually reflects the desirability of more overlap bases
in constructing a joint subspace. In other words, the mini-
mization of the proposed cost function implicitly reflects the
maximization of the overlap between the source and target
subspaces.

4) Constructing Joint Subspaces: We construct joint sub-
space MSS

i = {MS
i , MT

j |MT
j ∈Ci

}, where Ci denotes the ith
class, as illustrated in Fig. 5(c). As mentioned before, we sim-
ply take all the original data samples from all the involved
subspaces to implicitly construct the joint subspaces.

5) Training Classifiers on the Joint Subspaces: We train
one-versus-rest linear SVM classifiers for each class using the
labeled data samples in the joint subspace. Specifically, for a
class i, a linear SVM classifier is trained by using the labeled
data samples belonging to MSS

i , i.e., the source data samples
with the label of i and the target data samples assigned to
the label i. Then we apply the linear SVM classifiers to the
unlabeled data in the target domain for classification.

C. Anchor Subspaces Obtained in Target Domain

We construct each anchor subspace by selecting one target
data sample and combining it with its nearest neighbors. This
way, the obtained compact group of data samples are likely
to be from the same class [39]. Specifically, we first apply
the K-means algorithm to cluster all the target data into a
large number of Z groups. We set Z = (NT/γ ), where γ

is the desired average group size. In each group of data, we

find a compact core subgroup consisting of a small number
of N samples, e.g., N = 5, which are taken for constructing
an anchor subspace. In this paper, the core subgroup for the
group L is constructed by the following two steps.

1) Estimate the center of the core subgroup by finding the
data sample x∗ to

min
x∈L

∑

x′∈N(N−1)(x)

∥
∥x − x′∥∥

2 (2)

where N(N−1)(x) denotes the N −1 nearest neighbors of
x in L.

2) Take x∗∪N(N−1)(x∗) as the core subgroup for construct-
ing an anchor subspace.

For the groups that contain less than N data samples, we do
not construct an anchor subspace.

D. Labeling Each Anchor Subspace

Note that, we have constructed C subspaces in the source
domain, one for each class, denoted as {MS

i }C
i=1. Their corre-

sponding labels, denoted as Y = {yi}C
i=1 ∈ RC×C, which is an

identity matrix, i.e., the ith bit of yi is 1 and all the other bits of
yi are 0. In this section, we developed a new strategy to assign
class labels Y ′ = {y′

i}K
i=1 ∈ RC×K for the K anchor subspaces

{MT
i }K

i=1 constructed in target domain. This strategy includes
two main components: 1) the similarity between subspaces
and 2) the cost function for subspace label assignment.

1) Distance Between Subspaces: To calculate the dis-
tance between two subspaces, principal angles are usually
used [9], [40]. Principal angles between subspaces, which par-
ticularly defined between two orthonormal subspaces, serve as
a classic tool in many areas of in computer science, such as
computer vision and machine learning.

We follow the definition in [40], given two orthonor-
mal matrices M1 and M2, the principal angles 0 ≤ θ1 ≤
· · · θm ≤ π/2 between two subspaces span(M1) and span(M2)

is defined by

cos θk = max
uk∈span(M1)

max
vk∈span(M2)

uT
k vk

s.t. uT
k uk = 1, vT

k vk = 1

uT
k ui = 0, vT

k vi = 0, (i = 1, . . . , k − 1). (3)

The principal angles are related to the geodesic distance
between M1 and M2 as

∑
i θ

2
i [40].

In practice, the principal angles are usually computed
from the singular value decomposition (SVD) of MT

1 M2,
i.e., MT

1 M2 = U(cos �)VT, where U = [u1, . . . , um],
V = [v1, . . . , vn], and cos � is the diagonal matrix
diag(cos θ1 · · · cos θmin(m,n)).

In this paper, as shown in Section III-D2, we need both
cross-domain subspace distance and within-domain subspace
distance to define the cost function for anchor subspaces label-
ing. For the cross-domain subspace distance, e.g., between
subspace MS

i with si data samples in the source domain and
MT

j with tj data samples in the target domain, we first orthogo-
nalize both of them to obtain MS

i and MT
j , and then calculate
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the distance as

D
(

MS
i , MT

j

)
�

min(si,tj)∑

i=1

sin θi (4)

where θi come from the SVD of (MS
i )TMT

j that
(MS

i )TMT
j = U(cos �)VT .

Similarly, for the within-domain subspace distance, e.g.,
between two target (anchor) subspaces MT

i and MT
j that both

of them have N data samples, we first orthogonalize both of
them to get MT

i and MT
j , and then calculate the distance as

D
(

MT
i , MT

j

)
�

N∑

i=1

sin θ ′
i (5)

where θ ′
i come from the SVD of (MT

i )TMT
j that

(MT
i )TMT

j = U(cos �)VT.
The above defined subspace distance follows the assumption

that the samples within the same class share the same subspace
even though they are from different domains. Consequently,
the distance between subspaces across source and target
domains of a specific class tends to be smaller than that
between different classes. We will show quantitative compar-
ison in Section IV-B to demonstrate this advantage.

We further generate two affinity matrices, C × K matrix
AST to reflect the distances between K anchor subspaces and C
source subspaces, and K×K matrix ATT to reflect the pairwise
distances among K anchor subspaces. More specifically, we
have AST(i, j) = exp(−(D(MS

i , MT
j )/2σ 2)) and ATT(i, j) =

exp(−(D(MT
i , MT

j )/2σ 2)).
2) Cost Function and Optimization: Two important issues

are considered in assigning a label to each anchor subspace:
1) the distance between an anchor subspace and the same-label
source subspace should be small and 2) the local topologi-
cal structures in the target domain should be preserved [41],
i.e., anchor subspaces with shorter distance are more prefer-
able to be assigned to the same class. Considering these two
issues, we propose the cost function as follows:

C(Y ′) =
C∑

i=1

K∑

j=1

∥
∥
∥yi − y′

j

∥
∥
∥

2
AST

ij + ρ

K∑

j=1

K∑

j′=1

∥
∥
∥yj − y′

j

∥
∥
∥

2
ATT

jj′ (6)

where AST and ATT are the affinity matrices of interdo-
main subspace pairs and subspace pairs within target domain,
respectively.

Adding a constant term
∑C

i=1
∑C

j=1 ‖yi − yj‖2Iij into C and
splitting the first term into two parts, we get

C(Y ′) = 1

2

C∑

i=1

K∑

j=1

∥
∥
∥yi − y′

j

∥
∥
∥

2
AST

ij + 1

2

C∑

j=1

K∑

i=1

∥
∥yj − y′

i

∥
∥2

AST
ij

+ ρ

K∑

j=1

K∑

j′=1

∥
∥
∥y′

i − y′
j

∥
∥
∥

2
ATT

jj′ +
C∑

i=1

C∑

j=1

∥
∥yi − yj

∥
∥2

Iij

(7)

where Iij is the ijth element of the identity matrix I.

Note that the first and second terms are equal. The cost
function C can be further written as

C(Y ′) =
C+K∑

i=1

C+K∑

j=1

‖Yi − Yj‖2Aij, s.t. YT1 = 1 (8)

where Y = [Y, Y ′], A =
[

I 1
2 AST

1
2

(
AST

)T
ρATT

]

. We also relax

the constraint to this cost function by only requiring the sum
of each column in Y to be 1.

By including the constraint term, the cost function can be
written in a matrix form [42]

L(Y, λ) = Tr
(
Y
YT) + λT(

YT1 − 1
) + μ

2

∥
∥YT1 − 1

∥
∥2

2 (9)

where 
 = D−C is the Laplacian matrix of A. D is the degree
matrix which is a diagonal matrix with Dii = ∑

j Aij. λ ∈
RC+K is the Lagrange multiplier. To minimize the objective
function L, we separate it into two steps to update its two
unknowns Y and λ alternately:

Step 1: Having λ fixed, optimize Y by computing the
derivative of L with the respect to Y and setting it to be zero

∂L(Y, λ)

∂Y = 0 ⇒ Y
 + 1λT + μ
(
11TY − 11T) = 0. (10)

Note that Y contains two parts Y and Y ′, with Y is known.
Thus, to solve it, as in [43], we first split the Laplacian matrix

 into four blocks along the Cth row and column


 =
[


CC 
CK


KC 
KK

]

.

Similarly, we separate λ into two parts

λ1 = [λ1, λ2, . . . , λC]T and λ2 = [λC+1, λC+2, . . . , λC+K]T.

Then Y ′ can be updated by solving the following equation:

Y ′(k+1)
KK + μ11TY ′(k+1) = μ11T − Y
CK − 1λ
(k)T
2 . (11)

The solution is given by the Lyapunov equation [44]. With
this solution, Y(k+1) can be achieved by putting Y and Y ′(k+1)

together as Y(k+1) = [Y, Y ′(k+1)].
Step 2: Having Y fixed, perform a gradient ascending update

with the step of μ on Lagrange multipliers as

λ(k+1) = λ(k) + μ
(
Y(k+1)T

1 − 1
)
. (12)

To initialize this optimization process, we simply set λ(0),
Y ′(0) to be zero, and set the maximal number of iteration
maxIter to be 1000. This whole algorithm is summarized in
Algorithm 1.

Since we only require the sum of each column in Y to be 1,
after we get Y ′, we set the bit with the maximal value in each
column to 1 and all the other bits to 0.

IV. EXPERIMENTAL RESULTS

In this section, we first give the evaluation results on
two components of the proposed algorithm, i.e., the sub-
space distance we used and the anchor subspaces labeling.
Then we evaluate the proposed algorithm comprehensively on
two widely used cross domain recognition datasets: 1) object
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Algorithm 1 Labeling the Anchor Subspaces

Input: Affinity matrix A, maxIter, labels Y for MS

Output: Labels Y ′ for MT .

Initialization: λ(0), Y ′(0) to zero
1: Do
2: Update the Y ′(k+1) by solving the following equation:

Y ′(k+1)
KK + μ11TY ′(k+1) = μ11T − Y
CK − 1λ
(k)T
2

3: Update Y(k+1) = [Y, Y ′(k+1)].
4: Update λ(k+1) = λ(k) + μ

(
Y(k+1)T

1 − 1
)

.
5: Check the convergence.
6: Until convergence or maxIter iterations reached.

TABLE I
NUMBERS OF DATA SAMPLES IN EACH CLASS FROM FOUR DOMAINS

recognition image dataset for computer vision tasks and 2) sen-
timent classification dataset for natural language processing
tasks.

A. Dataset and Experimental Configurations

The first dataset that we evaluate on is an image dataset.
The whole dataset has four subdatasets, which we use as
four domains, with 2533 images from ten classes in total, as
shown in Table I. The first three subdatasets were collected
by [26], which include images from amazon.com (Amazon),
collected with a digital SLR (DSLR) and a webcam (Webcam).
The fourth domain is Caltech dataset (Caltech) [45]. For sim-
plicity, hereafter, we use “A,” “C,” “D,” and “W” to denote
the “Amazon,” “Caltech,” “DSLR,” and “Webcam” domains,
respectively.

In the natural language processing task, customers’ reviews
on four different products (kitchen applications, DVDs, books,
and electronics) are collected as four domains [46]. Each
review consists of comment texts and a rating from 0 to 5.
Reviews with rating higher than 3 are classified as positive
samples, and the remaining reviews are classified as negative
samples. In total, there are 1000 positive reviews and 1000
negative reviews in each domain. The goal of this task is
to adapt the classifier training on one domain and use it for
classifying data samples in the other domain.

We ran our algorithm 20 times for each object-recognition
task and gave the average accuracy rate (%) and standard devi-
ation (%). In all of our experiments, we consistently set the
parameter γ to be 20 and N to be 5. We show that the perfor-
mance of the proposed algorithm is not very sensitive to these
two parameters in Section IV-D3.

TABLE II
DISTANCE MATRIX BETWEEN CLASSES ACROSS

SOURCE AND TARGET DOMAINS

TABLE III
RESULTS OF THE TARGET DATA SAMPLES LABELING

B. Evaluation on the Distance we Used in
Proposed Algorithm

The distance matrix in Table II is given to show that
the subspace-based distance is suitable for our method. In
this table, we use the data from object recognition dataset.
Each column denotes the distance between a specific class
(C1, . . . , C10) in source domain and a class (C1, . . . , C10)
in target domain. Note that all the numbers are the average
of all 12 pairs of the source and target domain (described
in Section IV-D1). We can see that the distances, across two
domains, between the same class are relatively smaller than
those between different classes. Therefore, the results also
demonstrate the assumption that the samples with the same
class share the same subspace even though they are from dif-
ferent domains, i.e., the distance between subspaces across
source and target domains of a specific class tends to be
smaller than that between different classes.

C. Evaluation on Anchor Subspaces Labeling

We also evaluate the effectiveness of the proposed anchor
subspaces labeling algorithm introduced in Section III-D. In
Table III, “Labeled #” denotes the number of target data sam-
ples which are used for generating the anchor subspaces and
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TABLE IV
RESULTS OF SINGLE SOURCE AND TARGET DOMAIN ON THE OBJECT RECOGNITION DATASET.

“−” DENOTES THAT THERE IS NO RESULT REPORTED BEFORE

then assigned labels, and “Labeling Accuracy” denotes the
labeling accuracy (%). “Baseline (SVM)” denotes the accu-
racy by directly utilizing the SVM classifier trained from the
source domain to the target domain. As shown in Table III,
we can see that the number of the target data samples used for
labeling (Labeled # column) are only about 10% out of the
total number of the target data samples (the “Total #” column),
as well as the accuracies of the labeling are not perfect (the
“Accuracy” column). This shows that the proposed algorithm
benefits from involving the information from the target domain
by labeling the target data samples, even through the num-
ber of the labeled target data are relatively small and labeling
accuracies are not perfect. Especially, the accuracy of proposed
method is even better than the label assignment in the case of
W → D. We argue that the labeled target data samples pro-
vide the information from the target domain with noise. SVM
classifier takes the information from the target domain with
noise-tolerant to improve the performance comparing with the
classifier without using target information.

D. Cross-Domain Recognition on Object Dataset

Following the way of feature extraction for each image
in [11], we first use an SURF [49] detector to extract points
of interest from each image. We then randomly select a sub-
set of the points of interest and quantize their descriptors to
800 visual words using the K-means clustering. Finally, we
construct a 800-D feature vector for each image using the
bag-of-visual-words technique.

1) Single Source Domain and Single Target Domain: We
report the results on all 12 possible pairs of source- and

target-domain combinations. We compare our algorithm with
nine other methods, including K-singular value decompo-
sition [47], sampling geodesic flow (SGF) [8], GFK [9],
Metric [26], information-theoretical learning [48], subspace
interpolation [11], subspace alignment [36], domain adaptation
by shifting covariance [13], and transfer joint matching [14].
Also, we give the accuracy rate by directly utilizing the SVM
trained from source domain to the target domain. Their results
in Table IV are obtained from previous papers, mostly by the
original authors. It can be seen that our algorithm performs
best in 9 out 12 domain pairs. In particular, in four domain
pairs our algorithm significantly outperforms (by more than
5%) all the comparison methods, i.e., C→A, C→D, A→C,
and C→W. Our algorithm shows a comparable performance
with the best performed method in the other three domain
pairs. Note that the “metric” method [26] is a semisupervised
method.

2) Multiple Source/Target Domains: We then evaluate the
performance when there are multiple source/target domains.
To get the fair comparison with other method, we also
directly get the results from the previous literature. Thus,
we only conduct the multiple source/target domains cross-
domain recognition on six possible different source- and
target-domain combinations, followed [34], among which
three combinations include two source domains and one
target domain, and the other three combinations include
one source domain and two target domains. When there
are multiple source/target domains, we simply merge the
data samples in all the source/target domains as a single
domain.
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TABLE V
RESULTS OF MULTISOURCE DOMAIN ADAPTATION ON THE OBJECT

RECOGNITION DATASET. NOTE THAT ALL THE COMPARISON

METHODS ARE SEMISUPERVISED DOMAIN ADAPTATION

METHOD EXCEPT THE US MARK ONE

When there are multiple source domains, we report the
results of four comparison methods, including SGF [8], robust
domain adaptation with low-rank (RDALR) [10], Fisher dis-
crimination dictionary learning (FDDL) [50], shared domain-
adapted dictionary learning (SDDL) [12], hierarchical match-
ing pursuit [51], and the model in [34], as shown in Table V.
For SGF [8], we report its performance under both unsuper-
vised and semisupervised settings. Note that RDALR, FDDL,
and SDDL are all semisupervised methods, while our proposed
method is unsupervised. It is clearly to see that the proposed
method outperforms all the comparison methods significantly.

In principle, using multiple source domains should provide
more information for each class, which should result in higher
performance than using a single source domain. For example,
for the domain combination of “W + D→A” (41.3%), it shows
a marginal performance improvement over the single-source
domain cases, “D→A” (38.5%) and “W→A” (39.1%). In prac-
tice, however, we do not always achieve higher performance
when using multiple source domains. For example, comparing
the results from Tables IV and V, the performance of “D +
A→W” (73.2%) lies in between the performances of two
single-source domain cases “D→W” (89.5%) and “A→W”
(42.4%). This is an interesting problem to be studied in our
future work.

When there are multiple target domains, we only find two
comparison methods, SGF [8] and the method from [34]. Both
unsupervised and semisupervised settings were developed for
SGF, and the model from [34] is the semisupervised-based
method. We take the performance from [8] and [34], and
include that in Table VI. It can be seen that the proposed
algorithm performs better than both settings of SGF and two
out of three cases of the model from [34].

In principle, using multiple target domains does provide
more information, since the labels are only available in the
source domain. Accordingly, the performance of using multi-
ple target domains should be the weighted (based on numbers
of data samples in each involved target domain) average of
the performance of using each target domain separately. The
results in Tables IV and VI are largely aligned with this
expectation.

3) Performance Under Different Parameter Settings: There
are two main parameters in the proposed algorithm: 1) the
desired average size of each group constructed in the target

TABLE VI
RESULTS OF MULTITARGET DOMAIN ADAPTATION ON THE 2-D OBJECT

RECOGNITION DATASET. “SS” AND “US” DENOTE THE

SEMISUPERVISED AND UNSUPERVISED

SETTING, RESPECTIVELY

Fig. 6. Results when varying value for (a) γ , which determines the number
of groups obtained by the K-means algorithm, and (b) N, which indicates the
number of samples in each anchor subspace.

domain using the K-means algorithm, i.e., γ and 2) the number
of data samples in each anchor subspace, i.e., N. In order to
investigate the sensitivity to different parameter settings, we
tune each of the two parameters, respectively, and report the
performance of each parameter setting. For each parameter
setting, we report the accuracy rate by percentage, for eight
combinations of single source- and target-domains, and six
combinations of multiple source/target domains.

We take the value of γ in the range of 5–30 with the step
length of 5, and the results are shown in Fig. 6(a). We can see
that, the performance only varies in a small range for almost
all the domain combinations, except for “D, A→W.”

For N, we take its value in the range of 3 to 10 with the
step length of 1 and the results are reported in Fig. 6(b). It is
clear to see that the performance only varies in a small range
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TABLE VII
DOMAIN ADAPTATION RESULTS ON THE SENTIMENT CLASSIFICATION.

K: KITCHEN, D: DVD, B: BOOKS, AND E: ELECTRONICS

for almost all the domain combinations, except for D→W and
D, A→W when N > 8.

Therefore, we can conclude that the performance of the pro-
posed algorithm is not very sensitive to the two parameters γ

and N.
4) Running Time: All the running times are estimated on a

laptop with Intel i7-2620M CPU and 4 GB RAM. We mainly
implemented our algorithm by MATLAB 2014, with several
core functions implemented by C++ for speeding up. There
are five major steps in the proposed algorithm as introduced
in Section III-B. The running time for the first and the fourth
steps can be ignored. The second step requires the K-means
algorithm, which takes an average time of 0.2 s (varying along
with the number of target data samples). The third step, i.e.,
labeling the anchor subspaces, includes two substeps. The first
one is to calculate the affinity matrices which reflect the dis-
tances between anchor subspaces and interdomain subspaces,
respectively. Each distance calculation requires the orthogo-
nalization and SVD. In total, it takes average time of 0.02 s
for calculating these two matrices. The second substep is to
label anchor subspaces based on those two affinity matrices
by using Algorithm 1. This algorithm is iterative based and
its time complexity is known as O(T(C6+L6)), where T is the
maximal iteration number. Fortunately, the values of C and L
are both small, i.e., C = 10 and L < 20 based on Table III.
This algorithm takes an average time of 0.3 s. The most time
consuming step in the proposed algorithm is the SVM classi-
fier training, which takes an average time of 45 s. The running
times for different domain pairs vary along with the number
of training data samples, from the 3 s for D→W to 100 s for
“C→A.”

E. Cross-Domain Recognition on Sentiment
Classification Dataset

Although the proposed algorithm is originally designed for
vision tasks, it can be easily utilized for cross domain tasks
in other areas. In this section, as an example, we compare
the proposed algorithm with other seven methods in a domain
adaptation task from the natural language processing area.

We follow the same experiment setup described in [52].
In each domain, 1600 reviews including 800 positive reviews
and 800 negative reviews, are used as the training set, and
the rest 400 reviews are used as the testing set. We extract

unigram and bigram features on the comment texts, and the
feature dimension is reduced to 400. Finally, each comment
text is represented by a 400-D feature using the bag-of-words
technique.

We conduct experiments on four pairs of source- and target-
domain combinations. The same experiment has been also
conducted in [52]. The performance is reported in Table VII. It
is clear to see that overall the proposed algorithm outperforms
other seven methods. From this, we can see that the proposed
algorithm can also be used for DA problems in nonvision
areas.

V. CONCLUSION

This paper introduces a new subspace-based domain adap-
tation algorithm. The joint subspace is independently con-
structed for each class, which covers both source and target
domains. The joint subspace carries the information not only
about the intrinsic characteristics of the considered class,
but also about the specificity for each domain. Classifiers
are trained on these joint subspaces. The proposed algorithm
has been evaluated on two widely used datasets. Comparison
results show that the proposed algorithm outperforms several
existing methods on both datasets.
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