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Abstract— Motion is one of the most important cues to separate
foreground objects from the background in a video. Using a
stationary camera, it is usually assumed that the background
is static, while the foreground objects are moving most of the
time. However, in practice, the foreground objects may show
infrequent motions, such as abandoned objects and sleeping
persons. Meanwhile, the background may contain frequent local
motions, such as waving trees and/or grass. Such complexities
may prevent the existing background subtraction algorithms
from correctly identifying the foreground objects. In this paper,
we propose a new approach that can detect the foreground objects
with frequent and/or infrequent motions. Specifically, we use a
visual-attention mechanism to infer a complete background from
a subset of frames and then propagate it to the other frames
for accurate background subtraction. Furthermore, we develop
a feature-matching-based local motion stabilization algorithm to
identify frequent local motions in the background for reducing
false positives in the detected foreground. The proposed approach
is fully unsupervised, without using any supervised learning
for object detection and tracking. Extensive experiments on a
large number of videos have demonstrated that the proposed
approach outperforms the state-of-the-art motion detection and
background subtraction methods in comparison.

Index Terms— Infrequently moving objects, local motion
stabilization, object detection, visual attention.

I. INTRODUCTION

IN MANY video surveillance tasks, it is necessary to sep-
arate foreground objects of interest, which can be persons,

vehicles, animals, and so forth, from the background [1].
Based on the extracted foreground objects, high-level tasks,
such as detecting/tracking target objects [2] and recognizing
activities from videos, can be addressed more effectively.
Assuming that the camera is stationary, motion plays a key role
in video-based foreground/background separation: foreground
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objects are usually moving, while the background is relatively
static. Many approaches, such as optical flow and background
subtraction, have been developed to detect the motions of
foreground objects, based on which the foreground and the
background can be separated.

Optical flow requires that the foreground objects move
all the time. However, in practice, foreground objects may
show infrequent motions, i.e., objects remain static for a
long time and have (short duration) motions occasionally,
e.g., abandoned objects [3], removed objects [4], and persons
stopping for a while and then walking away [5], [6]. As an
example shown in Fig. 1, a red duffle bag was moving with a
person at the beginning of the video and then was abandoned
on the grassland for the rest of the video. Detection of such
an unattended bag is of particular importance in surveillance.
However, as shown in the second row of Fig. 1, optical flow
fails to detect the bag when it stays stationary.

Background subtraction is another type of effective
approach that has been widely used to detect the moving
foreground objects from a clean background [7]–[12]. Its basic
idea is to estimate a clean background image (without any
foreground objects) and then calculate, pixelwise, the differ-
ence between each video frame and the background image.
Assuming that the appearance difference is significant between
the foreground and the background, the regions with large
appearance difference are detected as the foreground and
the remaining regions are treated as the background [13].
However, it is also difficult to detect infrequently moving
objects using the existing background subtraction approaches.
The major difficulty is to estimate the background image: the
infrequently moving objects stay stationary for most of the
time, and thus could be easily taken as part of the background,
as shown in the third row of Fig. 1. More seriously, the
background may not be absolutely static in the video. Other
than camera shake, the scene itself may contain frequent local
motions, such as trees/grass waving in the breeze, which could
be easily confused as the foreground.

In this paper, we propose a fully unsupervised approach
to identify foreground objects with frequent and/or infrequent
motions. In this paper, we consider the cases in which the
camera is mostly stationary, while having few abrupt move-
ments. In this approach, we first divide a long streaming video
into subvideos (called super-clips later in this paper) so that
the background in each subvideo does not show significant
change. Within each super-clip, we develop algorithms to iden-
tify regions of difference (RoD) between temporally nearby
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Fig. 1. Illustration that shows how the proposed method can catch the red duffle bag with infrequent motions. For comparison, we also include the results
from a high-accuracy version of optical flow [14] and GRASTA [15], an online-discriminative-learning-based background subtraction method. Both optical
flow and GRASTA can detect only the moving objects and fail to detect the red duffle bag after it was left on the grassland. Best viewed in color.

Fig. 2. Flowchart of the proposed method for foreground detection. Best viewed in color.

frames. Since there is no object-specific information of the
foreground objects, a visual-attention mechanism is employed
for identifying an RoD to be part of either an object or the
background by assuming that the foreground objects should be
more salient than the background. The RoDs that are identified
as background regions are then propagated back-and-forth
in the super-clip to construct complete background images,
i.e., background models. With a complete background image
for each frame, we can conduct background subtraction to
identify the moving foreground objects. To address the local
frequent motions in the background, we further develop a
feature-matching-based local motion stabilization algorithm
that can reduce the foreground false positives in background
subtraction.

There are three major contributions in this paper.
1) A visual-attention-analysis-based algorithm is developed

to evaluate whether an RoD shows the background in a
frame.

2) A forward/backward background propagation algo-
rithm is developed to construct complete background
images.

3) A feature-matching-based local motion stabilization
algorithm is proposed to suppress frequent local motions
in the background and reduce false positives in
foreground detection.

Our overall framework of foreground detection is illustrated
in Fig. 2. The proposed method has been evaluated extensively
on a large amount of data that contain objects with infrequent
motions: 18 long videos (580 041 frames in total) from defense
advanced research projects agency (DARPA) Mind’s Eye
project Y2 data set containing significant illumination changes,

cluttered background, and motions in the scene, and six videos
(18 650 frames in total) from the category of intermittent object
motion in the ChangeDetection data set [5], [6]. The exper-
iment results have demonstrated that the proposed method
outperforms several state-of-the-art motion detection methods,
especially with the infrequent moving foreground objects.

The rest of this paper is organized as follows. The related
work is briefly discussed in Section II. In Section III, we intro-
duce the proposed background-modeling method for construct-
ing complete background images. In Section IV, we introduce
the feature-matching-based local motion stabilization method
for effective background subtraction. Section V reports the
experimental results, followed by a conclusion in Section VI.

II. RELATED WORK

Background subtraction may be the simplest approach for
foreground detection [7], [9], [16]. The basic idea is to obtain
a background image that does not contain any object of
interest. Then, a video frame will be compared with the
background image for foreground object detection [13]. The
most critical and challenging task in background subtraction
is background modeling, i.e., obtaining a clean background
image, which generally includes background initialization
and updating. Here, we give a brief review of this topic.
See [17]–[19] for a comprehensive survey.

Assuming that the foreground objects have a color or
intensity distribution different from that of the background,
the majority of background-modeling approaches learn a
background distribution at each pixel location, which is then
used to classify each pixel in a video frame as background
or foreground. The background distribution at each pixel
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can be modeled parametrically, such as a Gaussian mixture
model [7], or nonparametrically [20], such as kernel density
estimation [21]. More recently, statistical background model-
ing has been extended to estimate the background distribution
in a spatial or spatiotemporal neighborhood [22]–[25].
Sheikh and Shah [22] challenged the idea of modeling
background distribution at each pixel and employed the corre-
lation between spatially proximal pixels. Narayana et al. [23]
proposed a kernel estimate at each pixel using data samples
extracted from its spatial neighborhood in previous frames.
Moshe et al. [24] directly modeled the statistics from
3D spatiotemporal video patches to capture both the static and
the dynamic information of the scene. Hofmann et al. [26]
proposed a pixel-based adaptive segmentator, which
used a history of N background values to construct
the background model and a random update rule.
Hernandez-Lopez and Rivera [25] proposed to regularize
the likelihood of each pixel belonging to background or
foreground based on a quadratic Markov measure field model.
However, this method [25] assumes that the first frame of
the video does not contain the foreground and thus, cannot
handle the case that the foreground objects are present at
the beginning of the video. Shimada et al. [27] proposed
a bidirectional background-modeling approach based on
case-based reasoning whereby a background model was
retrieved from an online constructed background database.
Wang et al. [28] proposed to fuse the motion detection based
on spatiotemporal tensor formulation and the foreground
and background-modeling scheme based on split Gaussian
models. Wang and Dudek [29] modeled background for each
pixel by using a number of background values, followed by
a classification process based on matching the background
model templates with the current pixel values.

Besides modeling the statistics, foreground/background
separation can be performed through low-rank subspace
separation. Cui et al. [30] proposed a model using both
low-rank and group sparsity constraints, which represented
two observations, i.e., background motion caused by ortho-
graphic cameras lies in a low-rank subspace and pixels belong-
ing to one trajectory tend to group together, respectively.
He et al. [15] introduced an online background-modeling
algorithm, named Grassmannian Robust Adaptive Subspace
Tracking Algorithm (GRASTA), for low-rank subspace separa-
tion of background and foreground from randomly subsampled
data. Lin et al. [31] proposed to pursue low-rank subspace in
the spatiotemporal domain. However, the low-rank constraint
tends to treat the objects with infrequent motions as the
background.

In addition to color or intensity information, local texture
information has also been employed in background modeling.
Liao et al. [32] employed the local texture information by
using a scale-invariant local ternary pattern (SILTP), which is
modified from local binary patterns (LBPs). Han et al. [33]
integrated the histogram of SILTP features and color
information in a blockwise background model. Liu et al. [34]
extended the SILTP to spherical center-symmetric SILTP by
integrating spatiotemporal statistics for background modeling
with a pan–tilt–zoom camera. Kim et al. [35] proposed to use

scale-invariant feature transform (SIFT) features to generate
adaptive multihomography matrices, which are then used to
compensate for the global camera motion to detect the moving
objects under the moving camera. Yao and Odobez [36]
combined the local textures represented by LBPs and color
features.

However, there is a common assumption in the existing
background-modeling algorithms that the background is more
frequently visible than the foreground. As a result, they are
more likely to treat an object with infrequent motions as
part of the background. In this paper, we employ a visual-
attention-analysis-based mechanism to explicitly deal with the
foreground objects with infrequent motions.

There is another set of literatures focusing on detecting
abandoned/removed objects. For example, Lin et al. [37], [38]
propose two background models to handle abandoned objects.
The long-term background model is updated slowly by using
a large learning rate, while the short-term background model
is updated fast. Thus, the abandoned objects can be detected
through comparing background subtraction results using the
long-term and short-term background models. However, the
long-term background model will cause the ghosting artifacts.
Since the long-term background model is still updating, the
abandoned objects will be treated as background finally.
Tian et al. [4] model the background by using three Gaussian
mixtures to represent the background and changes in different
temporal scales, which also suffers from ghosting artifacts.
Maddalena and Petrosino [39] explicitly detect the stopped
objects from the moving ones by counting the consecutive
occurrences (i.e., detected as a foreground) of an object from
a sequence of frames. However, this model cannot detect the
removed objects since it employs the first frame to initialize
the background.

The saliency detection has recently raised a great amount
of research interest and has been shown to be beneficial
in many applications [40]–[42]. Although saliency detection
has been employed in foreground/background separation in a
few early attempts [43], [44], we would like to emphasize
that the proposed approach is totally different from these
approaches. In [43], regions with high visual saliency are
identified on each frame as foreground without considering any
motion cue. In [44], spatiotemporal segments with high visual
saliency are identified from a video as foreground. While this
method [44] considers motion cue in evaluating the visual
saliency, it will fail to detect an infrequently moving object
once it stays static and generates no motions. In this paper,
we do not directly use visual saliency to separate foreground
and background. Instead, we identify RoDs and compare the
saliency values of an RoD in different frames to help construct
the complete background images. Together with a step of back-
ground propagation, our method can better detect infrequently
moving objects. In addition, directly using saliency in each
frame to distinguish the foreground and the background may
work poorly when the background is highly textured—highly
textured regions are usually considered to be salient in most
visual-attention models [45]. The proposed method compares
the relative saliency of a region across frames to distinguish
the foreground and the background and can better identify the
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highly textured background, as shown later in the experiments
(see Fig. 7).

III. BACKGROUND MODELING WITH

VISUAL-ATTENTION ANALYSIS

Background modeling intends to construct a complete
background image that does not contain any object of
interest so that foreground objects can be detected through
background subtraction. The proposed background-modeling
method involves the estimate of RoDs between temporally
nearby frames. In the following, we first introduce the oper-
ation of RoD estimation and then introduce the proposed
background-modeling method.

A. RoD Estimation
In this paper, we take the following steps to estimate the

RoDs between two frames. First, we calculate the absolute
pixelwise difference between these two frames for the three
channels in hue, saturation, and value (HSV) space, respec-
tively, from which an overall difference-image denoted by DI
can be computed as follows:

DI(x, y) = max(DIh(x, y), DIs(x, y), DIv (x, y)) (1)

where DI(x, y) denotes the overall difference value at a pixel
(x, y) in DI; DIh(x, y), DIs(x, y), and DIv (x, y) are the
absolute difference values at pixel (x, y) for H , S, and V
channels, respectively. Note that we generate DI by pixelwise
taking the maximal value from HSV color channels, which
is inspired by the winner-take-all mechanism [46] in human
vision system. Then, DI is binarized to an RoD-map denoted
by RM as follows:

RM(x, y) =
{

1, DI(x, y) ≥ max(η1, η2 × max(DI))

0, otherwise
(2)

where max(DI) is the maximum value in DI. η1 and η2 are
two control parameters—η1 sets an absolute threshold,
whereas η2 sets an adaptive threshold relative to the difference
image DI.1 Finally, each connected region in RM is taken as
an RoD. For convenience, we use RoD( f, g) and |RoD( f, g)|
to represent the RoDs and the total area of the RoDs between
two frames f and g.

B. Background Initialization
From this section, we introduce the proposed method for

background modeling and background subtraction, starting
from an input long streaming video. For a long streaming
video, there may be intermittent, abrupt background changes,
such as those caused by sudden illumination change or camera
shake. In this paper, we first divide the long video into a set
of super-clips so that each super-clip does not contain abrupt
background change. In this way, we can perform background
modeling for each super-clip independently.

Specifically, the super-clips are constructed as follows. First,
the input long video is uniformly divided into short video clips
Ci , i ∈ {1, 2, . . . , M}, with a predefined length of N frames
for each video clip. A key frame ci is then selected from each
video clip Ci as its representative. In this paper, we simply

1η1 = 0.1 and η2 = 0.2 are chosen empirically in our experiments.

pick the middle frame fi�N/2� as the key frame ci for the i th
clip Ci = { fi j }, j ∈ {1, 2, . . . , N}. Starting from clip C1, the
key frame c1 is compared with each ci (i > 1) sequentially
until reaching a clip Cp with |RoD(c1, cp)| larger than a
threshold, which we empirically choose to be half of the image
area. We then merge all the clips Ci (1 ≤ i < p) into the
first super-clip. The second super-clip is generated similarly
starting from Cp . This process is repeated until it gets to the
last clip CM . The number of super-clips is further reduced
by merging nonadjacent super-clips if their temporally nearest
key frames are sufficiently similar, which is set to be true if
the total area of their estimated RoDs is smaller than 20% of
the image area. This merging process is very useful for the
temporary background change, e.g., for outdoor videos, the
illumination may get darker for a while and then get back to
normal, and the super-clips before and after the illumination
change can be merged into a longer super-clip. As shown
in Fig. 4, the key frames with the same-colored bounding
boxes belong to the same super-clip.

Each constructed super-clip consists of a sequence of
nonoverlapped and fixed-length short video clips, each of
which needs a background image to accommodate the possible
slow background variations within the super-clip. For each
video clip Ci , the key frame ci , which is the middle frame
of Ci in this paper, is employed as its initial background
image bi such that bi = ci . In the following section, we intro-
duce a propagation algorithm to update the initial background
image bi for each Ci by identifying foreground regions from bi

and replacing them with underlying background regions found
from other key frames.

C. Background Propagation Based
on Visual-Attention Analysis

Within a super-clip, we assume that for each pixel, there
is at least one key frame on which this pixel is located
in the background. Our goal is to identify such background
pixels from different key frames and then combine them to
form a complete background image. In this paper, we identify
RoDs between adjacent background images and use these
RoDs, instead of individual pixels, for constructing complete
background images. Let us consider a super-clip with m
clips Ci , i ∈ {1, 2, . . . , m} and our approach consists of:
1) a forward propagation from C1 to C2, then from C2 to C3,
until it gets to Cm , followed by 2) a backward propagation
from Cm to Cm−1, then from Cm−1 to Cm−2, until it gets
back to C1. For each clip Ci , we construct a background
image bi , which is initialized as the key frame ci . Without loss
of generality, let us consider one step of forward propagation,
say from Ci−1 to Ci , which only updates the background
image bi , as follows. Note that when performing this step
of propagation, bi−1 is not the original key frame ci . Instead,
it has been updated with the finished propagations from C1 up
to Ci−1.

1) Calculating the RoDs between bi−1 and bi .
2) For each RoD (connected region) R, let bi− j (R),

j ∈ {1, 2, . . . , k}, and bi (R) be the appearance of the
region R on the updated background images bi− j , and
to be updated background image bi , respectively.
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3) Constructing k new candidate background images
bR
(i− j )→i , j ∈ {1, 2, . . . , k} which are obtained by

replacing the region R in bi by using bi− j (R),
respectively

bR
(i− j )→i (x, y) =

{
bi− j (x, y), if (x, y) ∈ R

bi (x, y), otherwise.
(3)

4) Calculating the background likelihood of region R
on bi and bR

(i− j )→i and denote them as Pi (R) and
P(i− j )→i (R), j ∈ {1, 2, . . . , k}, respectively. Obtaining
the j∗ which has the maximal P(i− j )→i (R) by

j∗ = arg max
j∈{1,...,k}

P(i− j )→i (R). (4)

5) If P(i− j∗)→i (R) > Pi (R), we update the background
image bi by using bR

(i− j∗)→i .
6) Otherwise, no update to bi in terms of the region R

(other RoDs between bi−1 and bi may still update bi ).

Pi (R) describes the likelihood that the region R is located
in background in bi . Similarly, P(i− j )→i (R) describes the like-
lihood that the region R is located in background in bR

(i− j )→i .
In this paper, we employ a visual-attention mechanism to
examine whether a region catches people’s attention as a
foreground object usually does. Based on this, we define the
background likelihood as

Pi (R) ∝ 1

SVi (R)
(5)

where SVi (R) is the saliency of region R in the currently
estimated background image bi . To stimulate this mecha-
nism, the saliency value of a region, which closely relates
to human attention, is computed as the difference between
this region and its spatial surrounding (also known as center-
surround difference [47]). For example, considering a specific
RoD R enclosed in a red contour, as illustrated in Fig. 3(b),
we find its surrounding region S as the region between the red
contour and a blue box. In this paper, we construct the blue
box by doubling the height and the width of the rectangular
bounding box around the red contour (R). In the following,
we elaborate on the region saliency and this background
propagation process.

1) Region Saliency: To compute the center-surround differ-
ence, we calculate the image statistics in R and S, respectively.
Specifically, we derive the histogram in HSV color space and
then employ the χ2 distance over all the color channels to
measure the center-surround difference

dc(R, S) =
∑

q

1

2

∑
b∈1,...,Nbin

(
H q

R,b − H q
S,b

)2

H q
R,b + H q

S,b

, q ∈ {h, s, v}

(6)

where H q
R,b and H q

S,b denote the bth bin of the histograms of
the q channel in the HSV color space for the regions R and S,
respectively. Nbin is the number of bins in the histogram, which
we empirically set as 32.

As a global measurement, the histogram-based distance
ignores the spatial information of pixels in each region. It is
suggested by [45] and [48] that pixels near the boundary

Fig. 3. Illustration of calculating region saliency. (a) RoD-map between the
two initially estimated background images bi−1 and bi . (b) Region saliency
of R on bR

(i−1)→i (left) and bi (right) by combining two center-surround

differences, with the histograms of R and S shown on the top. dc(R, S) takes
the value of 0.0529 and 0.3356 on bR

(i−1)→i and bi , respectively, and dl (R, S)

takes the value of 0.0316 and 0.0470 on bR
(i−1)→i and bi , respectively. Best

viewed in color.

between R and S are more important than the others for
computing saliency. Thus, we also measure the local contrast
between R and S along the contour of R as follows:
dl(R, S)=

∑
l

|x̄l R − x̄lS |, l ∈ pixels along the contour of R

(7)

where

x̄l R =
∑

p∈Nl∩R(hlp + slp + vlp)

|Nl ∩ R| (8)

x̄lS =
∑

p∈Nl∩S(hlp + slp + vlp)

|Nl ∩ S| (9)

where Nl denotes the neighboring region centered at the
pixel l, which we set as a 7 × 7 window empirically; hlp ,
slp , and vlp represent the values in the HSV space for the pth
pixel in Nl .

In this paper, we define the saliency of the region R in bi

by combining these two center-surround distances, as

SVi (R) = dc(R, S) × dl(R, S). (10)
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Fig. 4. Illustration of the forward and backward background propagation. Each image in the second row represents a key frame of a video clip, which is
also considered as the initialized background image for the related clip. The key frames with the same color of bounding boxes belong to the same super-clip.
Red contours: RoD R considered. Best viewed in color.

An example is shown in Fig. 3(b), where the region R shows
much lower center-surround differences dc(R, S) and dl(R, S)
on the candidate background image bR

(i−1)→i [the left column

of Fig. 3(b)] than on the initial estimated background image bi

[the right column of Fig. 3(b)]. In this case, we need to update
the background image bi in terms of the region R.

2) Background Propagation: By performing the forward
propagation from C1 up to Cm in the super-clip, we expect
that the backgrounds shown on earlier clips will be propagated
to the later clips. After that, we need to perform backward
propagation from Cm down to C1 since the foreground on
earlier clips, such as C1, cannot be replaced by backgrounds
in the forward propagation. Let us still use the forward
propagation from bi−1 to bi as an example. As given in (3),
we construct k candidate background images bR

(i− j )→i ,
j ∈ {1, 2, . . . , k}. In this paper, we set k to be 6,
i.e., we construct bR

(i− j )→i , j ∈ {1, 2, . . . , 6} by copying
region R from updated background images
bi−1, bi−2, . . . , bi−6. In this way, we calculate the region
saliency of R on these six candidate background images
and the background image bi , then pick the one on which
region R shows the lowest saliency (i.e., the highest
background likelihood) to update bi .

An example is shown in Fig. 4, an RoD R is shown on
six updated background images and the to-be-updated
background image bi . The saliency value of R on the can-
didate background images bR

(i−1)→i , bR
(i−2)→i , . . . , bR

(i−6)→i

are 0.0076, 0.0074, 0.0072, 0.0073, 0.0067, and 0.0063,
respectively; whereas the saliency of R on bi is 0.0639.
As a result, in this step of propagation, we use the candidate
background image bR

(i−6)→i as the updated bi , which can
also be considered as replacing the region R in bi by using
the R in bi−6. From Fig. 4, it can be seen that the persons
appearing at the beginning of the super-clip (e.g., ci−6) cannot
be removed in forward propagation. To construct clean and
complete background images, we have to perform backward
propagation (from Cm down to C1). These persons will be
replaced by the background if they leave the original location
at some later key frames. Note that the backward propagation
is performed on the background images that have been updated
in the forward propagation.

IV. BACKGROUND SUBTRACTION AND

LOCAL MOTION STABILIZATION

A. Background Subtraction

Once the background image is constructed for each video
clip Ci , background subtraction can be conducted by sub-
tracting every frame in the video clip from the background
image. We use the same algorithm for calculating the RoDs
(see Section III-A) for background subtraction. The only
difference is that we input a frame and the background image,
instead of two frames, to calculate the RoDs, which are taken
as the detected foreground objects.

B. Local Motion Stabilization Based on Feature Matching

The pixelwise background subtraction as presented above is
sensitive to frequent local motions in the scene (background),
such as trees and/or grass waving in the breeze. As a result, the
waving trees and/or grass will be misdetected as foreground
objects. To suppress the effect of local motions in background
subtraction, we propose a local motion stabilization method
based on feature matching.

In this case, the detected RoDs from background subtraction
(i.e., subtracting a frame f to the background image b) may
come from the foreground objects or the background local
motions. We examine each RoD R in f and identify it to
be part of the foreground or the background. Our basic idea
is that, if R is part of the background in f , then f (R), the
region R in f , and b(R), the region R in b, should share a lot
of appearance features, such as SIFT features, although there is
background local motion between f and b. The SIFT features
are invariant to image scale and rotation, and robust to changes
in illumination, noise, and minor changes in viewpoint. Since
SIFT features are invariant to image scale and rotation, robust
to changes in illumination and noise, and have the highest
matching accuracy compared with other local features [49],
we detect and match the SIFT features between f (R) and b(R)
and define the background likelihood of R in f as

�( f (R)) = Nmatched

max(N f , Nb)
(11)
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TABLE I

INFORMATION OF IMAGE DATA SETS USED IN EXPERIMENTS

Fig. 5. Illustration of the proposed local motion stabilization algorithm based
on SIFT matching. Left: current frame. Right: background image. The true
foreground object (a person) is detected because of a few pairs of matched
feature points. The false alarm (a waving tree) can be removed due to a lot
of matched feature points. Best viewed in color.

where Nmatched denotes the number of matched SIFT
pairs [50]2 between f (R) and b(R); N f and Nb denote the
number of detected SIFT feature points on f (R) and b(R),
respectively. In our experiments, if �( f (R)) is larger than a
predefined threshold τ ,3 R is considered to be part of the
background in f , and we remove it from the foreground
detection result.

An example of local motion stabilization using the SIFT
matching is illustrated in Fig. 5. The left image represents
a frame f , and the right image represents the background
image b constructed, as described in Section III. After back-
ground subtraction, two RoDs, shown as the regions enclosed
in the red contours, are detected. One of them contains a
real object (i.e., a person); and the other one is part of
background (i.e., a waving tree). The SIFT matching between
the real object and the background returns a few pairs of
matched points (top-left subimages); while it returns a lots of
matched pairs between the trees in these two images (top-right
subimages).

Although there is a risk of missing foreground objects, if
the foreground objects have very similar appearance as the
background, it is worth applying the motion stabilization to
reduce a large number of false positives due to frequent local
motions present in the background, especially in an outdoor
environment. In practice, the proposed method can work well
even if the foreground objects have similar textures as the
background. As demonstrated in Fig. 7, waving tree/grass can
be effectively eliminated from foreground detections; while
the soldiers in the camouflage uniforms, which have similar
texture as the bushes, are kept using the proposed stabilization
algorithm.

2In our work, we use the code from http://www.cs.ubc.ca/∼lowe/keypoints/
3τ is set to 0.1 empirically in our experiments.

V. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our method,
we have conducted extensive experiments on two data sets:
DARPA data set and ChangeDetection data set [5], [6]. The
detailed pieces of information of these data sets are listed
in Table I.

The performance of the proposed method is compared with
five state-of-the-art background subtraction methods includ-
ing the method based on LBP and color features [36],
a method based on mean-shift [51], the visual background
extractor (ViBe) method [13], the GRASTA method [15],
and the spatial coherence self-organizing background subtrac-
tion (SC-SOBS) [52]. For these methods used for comparison,
we use the codes provided by their authors.

The proposed method and the other methods in comparison
are evaluated quantitatively in terms of Recall, Precision, and
F1-measure. In this paper, we define Recall as the ratio of
the overlapped area between the ground truth bounding boxes
(or foreground regions) and the detected foreground regions
to the area of the ground truth bounding boxes (or foreground
regions)4; and define Precision as the ratio of the overlapped
area between the ground truth bounding boxes (or foreground
regions) and the detected foreground regions to the area of
the detected foreground regions. The F1-measure is defined
as the harmonic mean of Precision and Recall, i.e., F1 =
2 × (Precision × Recall/Precision + Recall).

A. Experimental Results on the DARPA Data Set

1) Long Streaming Videos: In the first set of experiments,
we evaluate the proposed method on the DARPA data set,
which has a total number of 580 041 frames and is a subset
of the DARPA Mind’s Eye project Y2 data set. Specifi-
cally, 18 videos with manually annotated ground truth are
selected. Each video is taken from a fixed camera viewpoint
and contains significant local motions (trees and/or grass
waving) and illumination changes in the scene. Ground truth
is bounding-box based, with 588 902 bounding boxes in total.5

The validation studies on this data set intend to demonstrate
that the proposed method is capable of handling challenging
scenes and can be scaled up to deal with large data.

We first evaluate the overall performance of foreground
detection on the entire DARPA data set. To justify the use of
the two center-surround distances described in Section III-C1,
we also report in Table II the performance of the proposed
method without considering either the color-histogram-based
distance dc(R, S) or the local-contrast-based distance dl(R, S)

4Because the ground truth labels in DARPA are given by bounding boxes,
the score of Recall tends to be low when evaluated on these two data sets.

5In this paper, we have manually corrected some incorrect labels.
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Fig. 6. Detection results on one sample video in the DARPA data set. The first column shows the original images from the video, and the following columns
from left to right show the background subtraction results using the LBP-based method [36], the mean-shift-based method [51], the ViBe method [13], the
GRASTA method [15], and the proposed method, respectively. Top to bottom: frames 60, 2200, 11000, 13800, 16350, and 21200. Best viewed in color.

TABLE II

PERFORMANCE COMPARISON ON THE DARPA DATA SET. VARIANTS OF
THE PROPOSED METHOD WITH DIFFERENT COMPONENTS: w/o C-HIST

AND w/o LC DENOTE THE PROPOSED METHOD WITHOUT THE

COLOR-HISTOGRAM-BASED DISTANCE AND WITHOUT THE

LOCAL-CONTRAST-BASED DISTANCE, RESPECTIVELY, AND
w/o STABILIZATION DENOTES THE PROPOSED METHOD

WITHOUT THE LOCAL MOTION STABILIZATION

in measuring the saliency. We can see that both of these
two distances contribute to the performance of the proposed
method, although the color-histogram-based distance con-
tributes more to the final performance than the local-contrast-
based distance does.

To demonstrate the effectiveness of the SIFT-matching-
based local motion stabilization, the performances of the
proposed method with and without local motion stabilization
are compared. As shown in Table II, the proposed method
with local stabilization significantly outperforms all the other
methods in comparison in terms of Precision and F1-measure.
From Table II, we can see that the SIFT-matching-based local
stabilization is effective in improving the Precision score by
reducing false detected foreground regions compared with the
one without local stabilization.

In Fig. 6, we show foreground object detection results using
one video as an example, where the illumination changes over
time. We can see that the proposed method achieves the best
performance: all objects are detected with a few false positives
caused by shadows. Furthermore, it is capable of capturing
objects with infrequent motions (e.g., the two persons near
the top-right corner in frames 16350 and 21200), which all
the other methods except the mean-shift-based method [51]
fail to detect. The mean-shift-based method [51] has shown to
suffer from local motions, and there is a lag in its background
modeling (e.g., the person near the top-right corner in all
frames is a false positive).

In Fig. 7, we show another example using a more challeng-
ing video. The background of this video includes many trees,
bushes, and grasses, which are waving all the time; and the sol-
diers in camouflage uniforms have similar appearance/texture
as the background. We can see that the mean-shift-based
method [51] totally fails for this video because of the frequent
local motions in the background. The ViBe [13] and the
GRASTA [15] can detect only the soldiers partially when
they are moving (see frames 12450 and 20850), and perform
even worse when the persons are staying static (see other
four frames). Furthermore, the ViBe detects many moving
background. In contrast, the proposed method obtains the
best detection result: much larger part of foreground and less
background are detected.

2) Video Clips: For further evaluating the performance
of detecting the objects with infrequent motions, we select
20 short clips from the DARPA data set. Each clip
has 1000 frames and contains objects with infrequent motions:
the objects stay at some locations for a relatively long time
within the clip. A quantitative validation is performed on
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Fig. 7. Detection results on another sample video in the DARPA data set. Top to bottom: frames 4800, 12450, 15500, 17000, 20850, and 21100. Best viewed
in color.

TABLE III

PERFORMANCE COMPARISON ON 20 VIDEO CLIPS, WHICH ARE

SELECTED FROM THE DARPA DATA SET AND CONTAIN
OBJECTS WITH INFREQUENT MOTIONS

these 20 short clips and the experimental results are reported
in Table III. In order to demonstrate the effectiveness of
forward–backward background propagation, we also com-
pare the proposed method with the one only with forward
background propagation. As shown in Table III, the pro-
posed visual-attention-based algorithms (the last three rows
in Table III) including the one without the backward propa-
gation outperform the other state-of-the-art methods in terms
of F1-measure. Not surprisingly, the proposed method with
forward-backward propagation and local motion stabilization
yields the best foreground detection performance among all
methods in comparison.

As shown in Fig. 8, a qualitative comparison is performed
on one of the video clips. In this clip, a red bag is abandoned
on the ground at the beginning of the clip and then is
taken away. Most of the methods (the mean-shift based [51],
the ViBe [13], and the GRASTA [15]) have a lag in their
background modeling and hence produce false positive detec-
tion of the bag after it is taken away. The proposed methods

(the last two columns in Fig. 8), even without backward propa-
gation, can successfully detect the removed bag by employing
the visual-attention analysis in the background modeling.
Furthermore, with the forward-backward background prop-
agation, the proposed method (the last column in Fig. 8)
is able to detect the bag in the whole video.

3) Discussion on Forward/Backward Background
Propagation: Most of the time, the results of using the
forward–backward background propagation are comparable
to the one using only the forward propagation, as shown
in the first three columns of Fig. 9. For the applications,
which require online processing, e.g., video surveillance, the
proposed visual-attention-based method could work well in
an online manner by only using the forward background
propagation.

However, the forward propagation can only propagate the
background along the time and thus, will fail to detect
the foreground before it moves, i.e., the removed objects.
As shown in the last three columns of Fig. 9, it fails to
detect the people and the cart at the beginning of the video
by using only the forward background propagation. Hence, for
the applications in which online processing is not necessary,
such as video retrieval, the forward–backward background
propagation will enable a more robust background model,
which is especially capable of handling foreground objects
with infrequent motions.

B. Experimental Results on the ChangeDetection Data Set

In the second set of experiments, the proposed method
has been evaluated on the ChangeDetection benchmark data
set [5], [6]6 for the category of intermittent object motion.

6The workshop held in conjunction with IEEE Conference on Computer
Vision and Pattern Recognition-2012 and 2014.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on July 27,2021 at 18:16:33 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: VISUAL-ATTENTION-BASED BACKGROUND MODELING FOR DETECTING INFREQUENTLY MOVING OBJECTS 1217

Fig. 8. Detection results on one of the selected video clips in the DARPA data set. The red duffle bag stays still at the beginning of the clip and is taken
away. Top to bottom: frames 1, 200, 400, 600, 800, and 1000. We give the results only using the forward background propagation in the last column, which
we will discuss in Section V-A3). Best viewed in color.

Fig. 9. Qualitative comparisons between the results of using only the forward propagation and the ones of using both forward and backward background
propagation (proposed) on a DARPA video clip. Forward denotes the results of using only forward background propagation. Proposed denotes the results of
using both the forward and backward background propagation. We show two cases in the first and last three columns, respectively. Top to bottom: frames 1,
200, 400, 600, 800, and 1000. Best viewed in color.

There are six videos (18 650 frames in total) in the intermittent
object motion category, each of which contains objects with
infrequent motions, e.g., abandoned objects and parked cars

moving away. These objects are often treated as part of
background before moving and will introduce ghost artifacts
in background subtraction.
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TABLE IV

PERFORMANCE COMPARISON ON THE INTERMITTENT OBJECT MOTION SUBDATA SET OF CHANGEDETECTION. IT IS WORTH MENTIONING THAT,
BASED ON THE BENCHMARK’S WEBSITE, THE REPORTED BEST F1-Measure IS 0.7891 FROM [28]

Fig. 10. Qualitative comparison on a video in ChangeDetection data set for the intermittent object motion category. The region inside the blue boundary is
the ROI, where ground truth labels of foreground objects are provided. Note that a red box was moved from the right to the left of the ROI and stayed still
for a long time, which is detected only by the proposed method. Top to bottom: frames 2450, 2900, 3300, 3700, 4100, and 4500. Best viewed in color.

The proposed method and other methods are quantita-
tively evaluated on the intermittent object motion category
exactly following the benchmark evaluation procedure as
in [5] and [6].7 Specifically, by defining TP, TN, FN, and
FP as the number of true positives, true negatives, false
negatives, and false positives, respectively, four additional
evaluation metrics are defined and employed in the benchmark:
1) specificity: (TN/TN + FP); 2) false positive rate (FPR):
(FP/FP + TN); 3) false negative rate (FNR): (FN/TN + FP);
and 4) percentage of wrong classifications (PWC): 100 ×
(FN + FP/TP + FN + FP + TN).

As shown in Table IV, the proposed method outperforms all
the comparison methods in terms of the F1-measure and the
PWC, which consider both Precision and Recall. Furthermore,
the proposed method achieved the best performance among
all the other methods that evaluated their performance on the

7We directly run the evaluation code provided [5], [6].

intermittent object motion subdata set of the ChangeDetection
database, according to their results reported on the bench-
mark’s website.8

We also present a qualitative comparison on the ChangeDe-
tection data set, as shown in Fig. 10. The ground truth labels
of foreground objects are provided only in the region of
interest (ROI) denoted as the region enclosed by the blue
boundary. From Fig. 10, we can see that the mean-shift-based
method [51] generally produces more false positive detection
of foreground objects than the other methods. Note that a
red box was moved from the right to the left of the ROI and
stayed still for a long time. The proposed method is able to
capture this box all the time, while all the other methods in
comparison fail to detect it. Furthermore, even for the regions
outside the ROI, which are not counted in the evaluation, our
method can detect the moving objects better with less false

8http://www.changedetection.net/
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TABLE V

AVERAGE RUNNING TIME PER FRAME FOR THE FOUR MAJOR STEPS, i.e.,
INIT. (BACKGROUND INITIALIZATION), PROP. (BACKGROUND

PROPAGATION), FG. (FOREGROUND DETECTION), AND

STAB. (LOCAL MOTION STABILIZATION),
AS WELL AS THE TOTAL TIME

positives, especially in frames 4100 and 4500. In addition,
compared with the other methods except the mean-shift-based
method, the proposed one can catch the foreground objects
as a whole (for example, the vehicles in frames 3700, 4100,
and 4500), which is desired for next level tracking and
recognition tasks.

C. Algorithm Efficiency

The proposed method was implemented in MATLAB
and evaluated on a PC with Intel Xeon W3565 CPU and
4-GB RAM. The average running time per frame is reported
in Table V for both data sets. Specifically, we report the
per-frame running time for all four major steps, i.e., back-
ground initialization, background propagation, foreground
detection, and local motion stabilization, as well as the total
running time per frame. Since the background initialization
and background propagation are performed only on key
frames, each of which represents a 60-frame video clip,
we divide the per-key-frame running time of these two steps
by 60 to compute their per-frame running time.

VI. CONCLUSION

In this paper, we proposed a novel method to detect moving
foreground objects, which is especially capable of detecting
objects with infrequent motions. Specifically, we improved
the background subtraction method by integrating a visual-
attention mechanism to distinguish the foreground and
background. The identified background regions can be propa-
gated back-and-forth along the whole super-clip. Furthermore,
we also proposed an SIFT-matching-based local motion stabi-
lization algorithm to deal with the frequent local motions in the
scene. Extensive experimental validations on two challenging
data sets have demonstrated that the proposed method out-
performs the state-of-the-art background subtraction methods
in comparison. As shown in the experimental results, the
performance improvement is more impressive for detecting
objects with infrequent motions.

In this paper, a simple video decomposition strategy has
been used to divide the long video into super-clips and works
well under the assumption that the camera keeps static in
most of the time. In order to handle complicated camera
motions, in the future, we plan to try more sophisticated video
decomposition methods, such as [53], to generate super-clips.

The proposed bidirection background propagation strategy
is suitable to build a background model in an offline manner.
As we discussed in Section V-A3, the results of using only

the forward propagation and using bidirection propagation are
comparable, except for the removed objects. In the future,
we plan to extend this paper to automatically switching
between online and offline modes. The online mode, which
uses only the forward propagation, is employed as the major
mechanism for real-time foreground detection. Once a region
that was previously modeled as part of background starts to
move, i.e., an object is removed from the scene, the offline
mode will be triggered and the background model will be
updated using the bidirection background propagation. We also
plan to use the proposed model in surveillance applications,
especially when the events of interest involve infrequent mov-
ing objects, e.g., abandoned object detection and fall detection.
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