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Abstract. Transparency and reproducibility are important aspects of validation for
Machine Learning (ML) models that are not fully understood and applies indepen-
dently of the application domain. We offer a case study of reproducibility that high-
lights the challenges encountered when attempting to reproduce analyzes obtained
with Machine Learning methods in materials informatics. Our study explores pre-
diction results obtained with ML models and issues in training data serving as in-
put. We discuss challenges related to theory-driven and numerical errors in training
data, lack of reproducibility across platforms and versions, and effects of random-
ness when varying hyperparameters. In addition to model accuracy, a main metric
of interest in the ML community, our results show that model sensitivity may be
equally important for applying ML in domain applications such a materials science.
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1. Introduction

The design of new materials depends upon the ability to combine precursor materials to
make samples and test them using expensive characterization techniques to reconstruct
molecular and atomic structures and deduce interesting properties. Discovery through
empirical process is slow and largely depends for its success on the intuition of individ-
ual scientists. Materials informatics, seeking to elucidate structure-property relationships
using complex, multi-scale information in a physically meaningful, statistically robust
manner, is becoming more data-intensive due to the advent of high throughput detectors
and more complex models [1], [2]. In this context, accelerating discovery requires re-
ducing the combinatorial explosion of the number of potential candidates in the search
space for making samples of interest. Machine Learning (ML) methods are increasingly
used to predict the relationship between structures and properties and provide guidance
to experimentalists for suggesting potentially useful combinations [3]–[5]. Neural Net-
works have witnessed a revival in the ML community thanks to new methods prevent-
ing overfitting, new training methods and the use of computer hardware with GPUs, so
that their predictive power has superseded that of other methods, for instance in drug
discovery [6], [7]. In order to harness the benefits of new generation ML algorithms in
materials informatics and broaden the path of accelerated discovery it is necessary to un-
derstand their limits and establish transparency in how results are obtained. Better ways
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of explaining results obtained with ML methods will lead towards better reproducibility
of results in materials science, and thus better confidence in the ability of ML methods
to predict new candidates for experimentation.

Transparency and reproducibility are important aspects of validation for Machine
Learning models that are not fully understood and applies across the board independently
of the application domain. The National Academy of Science defines reproducibility
as obtaining consistent computational results using the same input data, computational
steps, methods, code and conditions of analysis [8]. Replicability implies consistent re-
sults across studies aimed at answering the same scientific questions. Reproducibility
and replicability of scientific results improve when researchers provide access to their
codes, methods, data, and execution environments. A survey points to the fact that, of
400 Artificial Intelligence papers recently presented at major AI conferences, only 6%
share their algorithms codes, and a third share their data [9].

Understanding the limits of computational reproducibility when dealing with com-
plex mathematical models such as ML models goes beyond making accessible scien-
tific code, training data, and hyperparameters. ML methods present specific challenges
in reproducibility related to the building of models, the effects of random seeds, and
the choice of platforms and execution environments [10]. ML models that are inherently
non-deterministic also pose a problem for the validation of results. If the training sets
are divided for cross-fold validation and testing, the partitioning of the sets will affect
reproducibility. In materials science, the lack of open access and the heterogeneity of
experimental data that describe only few aspects of a material have led to the use of
computational structures calculated from physics first principles (ab initio) for the train-
ing of models. Experimental data can provide the ground truth to evaluate the accuracy
of algorithms but these data are typically small, hard to come by, and not necessarily
representative of the problem at hand.

In addition, there is another factor limiting the reproducibility of ML models in
materials informatics. Data used as input, especially when they come from atomic and
molecular structures computed from theory, can introduce biases due to theoretical ap-
proximations. These biases may or may not influence the outcomes for the ML models
depending on where the sensitivity of these models lies. In diverse teams, the scientists
who build the models are not the ones developing the scientific simulation codes that pro-
duce input data. They may not be aware of the presence of these biases and their potential
for skewing models, as this requires in-depth knowledge of the parameters, theoretical
methods and implementations used for calculating the input data. On the one hand the
theoretical approximations made when calculating computational structures are known
to those producing these structures, but not available to others. On the other, scientists
who build ML models are presumably aware of the sensitivity of their models but not
of the theoretical approximations in their input data. The disconnect introduced at the
interface of these two groups of actors may result in poor performance prediction that
remains unexplained by scrutinizing the ML models alone.

In this paper, we offer a case study of reproducibility that highlights the challenges
encountered when attempting to reproduce analyzes and results obtained with Machine
Learning methods in materials informatics. Section 2 presents the rationale for using
these methods in materials discovery and highlights issues of reproducibility in the train-
ing data used by ML models. Section 3 presents several experiments reproducing results.
The first experiment uses QM9, a publicly available dataset of computed small organic
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Figure 1. An illustration of a MLP structure.
Figure 2. An illustration of a GBT structure.

molecules. It illustrates the fact that, even when data and methods are known, repro-
ducibility is still a challenge, due to hidden theoretical assumptions and lack of trans-
parency. The second set of experiments uses regression-based analysis, including a neu-
ral network (MLP) and a Gradient Boasted Tree (GBT), where computational structures
are used for training models, and experimental structures for validation (Figures 1 and
2). Section 4 discusses the results and Section 5 concludes with some pointers to future
work.

In this paper we make the following contributions:

• an inventory of issues related to reproducility challenges in the use of ML in
materials informatics

• an exploration of theoretical assumptions and uncertainties linked to training data
• several experiments reproducing results obtained with ML methods and compu-

tational data in materials informatics
• a comparison of results obtained with several common ML platforms (Tensorflow,

PyTorch, lightGBM)
• an exploration of the information required for understanding discrepencies in re-

sults
• a discussion of reproducibility challenges when using ML in materials discovery

2. The use of ML in materials science

2.1. Motivation

Many technological advances depend on materials with properties of particular interest.
Materials science is a field of research that takes the properties of interest and looks
for or designs new materials and characterizes them in the pursuit of those with the
desired properties. From a theoretical perspective it is understood that the structure of a
material determines its properties. The structure of a material is given by the chemical
composition and the positions of atoms as well as the length scales of material features
(such as grain sizes, fiber thickness, surface roughness, etc.). At present, there are roughly
two approaches to studying materials, an experimental approach, and a computational
one. Use of ML algorithms represents a new third approach (Figure 3).

In experimental materials science the general workflow consists of making a sample
of a candidate material and experimentally assess its properties (Figure 3a). There are a
broad range of properties that might be of interest and an equally broad range of exper-
iments to assess them. Examples are catalytic activity which may be measured in a flow
cell, charging characteristics that may be measured in a battery cell, the color charac-
teristics of LEDs, the thermopower of thermoelectric materials, critical temperature and
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critical current in superconductors, etc. The measured properties have to be understood
in terms of the structure of the sample to be able to propose other candidate materials
that may better match the set of desired properties. An additional set of experiments
particularly targets the structure elucidation but in some cases, e.g. X-ray spectroscopy,
experiments alone may not be sufficient to determine the structure.

Figure 3.Discovering the structure-property relation-
ship in materials informatics.

In computational ma-
terials science theoretical
models provide a way to
compute properties of in-
terest from a given mate-
rial structure (Figure 3b).
In particular ab-initio mod-
els based on Schrödinger’s
equation provide a path to
calculating a broad range of
properties. Resulting struc-
tures are validated against
experimental results. A
caveat is that these models
are typically computation-
ally very intensive and non-
trivial approximations are
needed to compute results
with reasonable compute re-
sources. Nevertheless, these computational models can be used to calculate materials
properties. Comparison of the computationally obtained results with the measured prop-
erties can help determine the structure of the material sample from which the measure-
ments were obtained.

However, the problem that remains is that Schrödinger’s equations only provides
a path to compute the properties from structures. In practical materials science prob-
lems the measured properties are given and the material structure needs to be solved.
Schrödinger’s equation does not provide a convenient formalism to solve such inverse
problems. By contrast, machine learning can be used to train a model that correlates in-
put data to output data (Figure 3c). In principle, machine learning does not care about the
direction of the relationship. It can be used with material structure as inputs and proper-
ties as outputs, but it can also learn the inverse model with the properties as inputs and
the structure as outputs. Based on this realization machine learning can be used in essen-
tially two modes. First, it can used as an alternative to ab-initio calculations to predict
materials properties from structures, but at a much lower computational cost. Second, it
can be used to build models for inverse relationships for which there are few, if any, alter-
native models available. Both kinds of applications could prove very valuable to moving
materials science forward.

2.2. Theory reproducibility and artifacts in training data

In the previous section the importance of machine learning to help solve materials sci-
ence problems was explained. For machine learning to be successful a key ingredient is
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the availability of diverse sets of accurate training data. The accuracy of the training data
is particularly important as ML models typically have no way of knowing the underlying
physics they aim to "learn". Instead, the training data is supposed to be a representation
of that physics in the form of a large number of individual examples. Systematic errors
in the training data will lead to these errors becoming ingrained in the ML model. The
availability of mature simulation codes, significant compute resources as well as soft-
ware for automatically running and analyzing simulations make it possible to generate
such data sets automatically. This is the approach taken in a few research projects already
[11]–[14]. The outstanding problem then is to ensure that the data obtained in this way is
sufficiently accurate. Solving Schrödinger’s equation is only practical after making some
approximations. These approximations lead to artifacts in the computed results and these
artifacts have non-trivial relationships to the underlying approximations. For example,
Density-Functional Theory (DFT) has been claimed to be in principle exact. But when
using the currently available density functionals, the models of electron structure suffer
from unphysical self-interaction errors and strong correlation effects that are poorly de-
scribed. In another example, configuration interaction (CI) methods with fixed excitation
levels, such as singles-doubles (SDCI), produce electron correlation energies that scale
incorrectly with the number of electrons.

In fact one may state that the important expertise of practitioners in the field is related
to these artifacts and therefore to knowing in which cases and how the results are affected
by them. In cases where preferred methods leave doubt about the results it is common to
try more advanced methods to reduce uncertainty. This expertise is only available to the
ML experts who design models in well-functioning inter-disciplinary teams that share
expertise and knowledge. When data obtained by such computations is made publicly
available for re-use, the lack of transparency may lead to inaccurate predictions in ML
results.

3. Study: Re-running ML models

We designed several experiments in reproducibility to illustrate the issues encountered
when using Machine Learning. The first experiment illustrates the lack of transparency
when calculating the computational structures and properties of small organic molecules
that can be used as training data (section 3.1). The second experiment tests common
platforms for training models under various versions of each platform (section 3.2). The
third experiment tests the models themselves under various conditions (section 3.3).

3.1. QM9 experiment on the accuracy of training data

Small organic molecules are used in de novo drug design and a number of studies with
large sets of computational molecules have been published [15] that can be used for
training data or benchmarking existing codes. QM9, one of these data sets, was built
using DFT methods that are supported by a wide range of quantum chemistry codes. The
QM9 data set contains the subset of C7H10O2 isomers consisting of 6,095 molecules.
This subset of molecules is small enough in numbers and the molecules are small enough
in size that calculations on this set can be repeated with relatively modest resources.
In their paper [16], [17] the authors document two important issues that may affect the
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results of simulations performed to obtain computational structures for training data.
Here these issues are accepted and the work focuses on reproducing the calculations
within the reported limits:

• that the reliability and accuracy of DFT depends on the chemical composition and
atomistic configurations in molecules and materials,

• and that most reported calculations are done on small molecules implying the
existence of a selection bias.

The structures published in QM9 were obtained by translating SMILES strings into struc-
tures, and performing subsequent geometry optimization. The final part of the geometry
optimization was done with DFT using the Gaussian 09 code [18] but similar capabilities
are available in most Gaussian basis set quantum chemistry codes. We used NWChem,
an open source package that implements this capability [19]. As these codes have been
stable for some time, and the final structures are minimal energy structures it should be
straightforward to test the following hypothesis: a geometry optimization started at the
published structure should converge at the first point with the same total energy if the
same energy expression and basis set (input data) are used.

The basis sets are specifically formatted for the code itself and some codes make his-
torically developed basis sets available with the codes. This is the case for Gaussian09,
where the 6-31G(2df,p) basis set used in this experiment was historically developed by
Pople and his collaborators on the Gaussian project [20]–[23]. The basis set made avail-
able in NWChem comes from the Basis Set Exchange [24]–[26], a community project
collecting basis sets and making them publicly available in formats allowable for their
respective codes. This project relies on publicly accessible data for the specification of
the basis set. Some basis sets have been revisited and refined over time and so discrepan-
cies between a built-in version of a basis set in one code versus that of another code are
possible.

Inspite of well documented sources of uncertainty in DFT calculations, for atoms
that are spherically symmetric, such as the ones we tested here, highly accurate results are
generally achievable. However, our results were significantly different from the results
published by the authors of the QM9 data set.

The difference between the two sets of results can largely be attributed to a technical
detail related to the way the handling of the angular momentum of the basis functions
may be chosen in different codes. Most codes allow one to choose between either Carte-
sian or spherical harmonic basis functions. Gaussian09 is different in that it allows one
to choose between Cartesian and spherical harmonic basis functions independently for
d-functions and other angular momentum functions. For example, in Gaussian one can
choose to use Cartesian d-functions together with spherical harmonic functions for all
higher angular momentum functions. The authors know of no other code that allows this
kind of flexibility.

The basis set chosen for calculating the QM9 data set is one that exploits this partic-
ular Gaussian feature. It uses Cartesian d-functions and spherical harmonic f-functions.
This means that the calculations reported for the QM9 data set can only be reproduced
with the Gaussian code and no other code. As Gaussian09 is proprietary code, the au-
thors of the QM9 paper are not at liberty to publish their implementation nor the input
data made available with the code. This lack of transparency can affect the re-use of their
data sets as training data for ML that may amplify the uncertainties.
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3.2. Training models

In a previous experiment by co-author Lin, ML models were used to predict Coordi-
nation Numbers (CN) known to characterize size and 3D shape of nanoparticles [27],
[28] (Figure 4). Training sets are built using computational data produced from ab ini-
tio methods. The model can then be used on experimental spectra to help determine
the properties of experimental particles. In the experimental process, XANES spectra, a
type of properties, are measured (4a). Coordination Numbers (CN) are calculated (not
shown). The computational approach calculates XANES spectra and Coordination Num-
bers from computational structures (4b). After validation, computational XANES spec-
tra and CNs are used to train the model. Predicted CN (box on the right) are compared to
Calculated CN to validate the model. In the ML approach, the trained model can be used
with large amounts of experimental spectra pouring out of high throughput detectors to
predict expected CN (4c).

Figure 4.Application of ML for guiding high
throughput experiments

Specifically, the ma-
chine learning models are
defined as a nonlinear func-
tion which maps the spec-
tra vector to the coordina-
tion number vector. It is
a typical regression task.
In this work, we evalu-
ated three major power-
ful and widely used regres-
sion models, (1) Gradient
Boosted Trees (GBT), an
efficient machine learning
model that ensembles a set
of decision trees; (2) mul-
tilayer perceptron (MLP), a
classic fully connected neural network; and (3) the most popular type of neural network,
(one-dimensional) convolutional neural networks (1D-CNN). For the reproducibility ex-
periment, we focus on GBT and MLP with a relatively deep structure of 5 layers with
400, 400, 200, 200, and 100 nodes respectively ([28].

3.3. Reproducibility across several different platforms

We first evaluate the reproducibility of different machine learning platforms and their
versions, and the results are shown in Table 1. Here we test platforms used for the MLP
(with Tensorflow and PyTorch) and GBT (with lightGBM) models. Specifically we keep
the same random seed for each model to avoid the randomness in model training, and
only use different platforms (Tensorflow, PyTorch and lightGBM) with their different
versions. We train models on the same training dataset. In Table 1 we define models as
reproducible if predictions on the same testing dataset are exactly the same. Our exper-
iment shows that different platforms cannot reproduce exactly the same model, while
different versions of the same platform show good reproducibility for TensorFlow and
PyTorch.
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Tensorflow PyTorch lightGBM

1.9.0 1.14.0 1.2.0 1.13.0 2.2.0 2.2.1 2.3.0

Tensorflow
1.9.0 Y Y N N - - -

1.14.0 Y Y N N - - -

PyTorch
1.2.0 N N Y Y - - -
1.3.0 N N Y Y - - -

lightGBM
2.2.0 - - - - Y Y N
2.2.1 - - - - Y Y N
2.3.0 - - - - N N Y

Table 1. The reproducibility across different deep learning platforms and versions.

3.4. Influence of some random factors in machine learning training

In this section, we investigate the influence of two random factors in two machine learn-
ing models that we applied to our Coordination Number prediction task, the multilayer
perceptron (MLP) and gradient boosted trees (GBT). We measure the influence of one
random factor at a time by fixing all the hyperparameters and other random factors (with
the appropriate random seeds), and let free the factor under consideration. We train the
model N (i ∈ {1, ...N}) times, and with each trained model, we obtain an accuracy xi on
the test data. If accuracy numbers xi

N
1 are close to each other, we say the random factor

has a small influence, in other words, the model is robust in terms of the random factor.
Specifically, the metrics we used to measure the dispersion of accuracy numbers are: 1)
the Coefficient of Variation (CV), also known as Relative Standard Deviation (RSD). CV
is defined as standard deviation divided by mean; and 2) the Mean Absolute Difference
(MAD), defined as 1

N(N−1)ΣN
i=1ΣN

j=1|xi − x j|. In this work, we set N = 5.

3.4.1. Influence of random factors in MLP

In this section, we investigate the influence of two random factors in MLP, i.e., data order
and weight initialization.

Influence of different data orders Most modern machine learning models use
stochastic (or mini-batch) gradient descent (SGD) to iteratively optimize the loss func-
tion. As a result, data is fed into the model in a random order for training, and this data
order adds randomness to the models. Theoretically, in gradients of different orders of
(mini-batch) samples, the optimizer uses different paths to get local minimums, and those
are usually different. To see how the orders affect the accuracy of the trained model, we
keep all the other factors fixed and only leave the freedom for the data order. The results
are: the CV of five models is 0.0933, and the MAD is 0.0464.

Influence of different weight initializations The optimizer of the modern machine
learning models usually uses a random start point (weights initialization) to start the
optimization process which also results in different local minimums. To see how the
weight initialization affects the accuracy of the trained model, we keep all the other
factors and only leave the freedom for weight initialization. In this task, as we did in last
section, we also trained the model five times, and apply the mean of absolute z scores to
measure the deviation of all five trained models. The results are: the CV of five models
is 0.0349, and the MAD is 0.0171.
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Model MLP GBT

Random factor Data order Weight init. Feature selection Data selection

CV 0.0933 0.0349 0.0035 0.0063
MAD 0.0464 0.0171 0.0023 0.0043

Table 2. The influence of the random factors in model training.

3.4.2. Influence of random factors in GBT

In this section, we investigate the influence of two random factors in GBT, i.e., the feature
random selections and data random selections.

Influence of random feature selections In each iteration (tree) of the training, GBT
may only use a fraction of the randomly selected features to speed up the learning process
while reducing overfitting. We set the features fraction at 0.5, i.e., the half of the features
are randomly selected to trained in each iteration. The results are: the CV of five models
is 0.0035, and the MAD is 0.0023.

Influence of random data selections In each iteration (tree) of the training, GBT
may only also use a fraction of the randomly selected data to speed up the learning
process. We set the data fraction is 0.5, i.e., half of the data are randomly selected to
trained in each iteration. The results are: the CV of five models is 0.0063, and the MAD
is 0.0043.

4. Discussion of challenges

There are many reproducibility issues in materials informatics workflows that can affect
the accuracy of results when using ML algorithms. We discuss them below in sequential
order:

• Theory-driven errors in the calculation of computational structures
• Numerical errors due to scalability
• Lack of reproducibility across platforms and versions
• Effects of randomness related to training the model itself
• Effects of randomness caused by domain shift when experimental results are used

in the test set of a model trained on computational structures.

In cases where the fundamental approximations are not expected to be problematic
it is critical to realize that important conclusions are drawn from comparisons of dif-
ferent results. If these results are obtained from calculations that are based on the same
approximations then the comparison is likely to benefit from partial cancellations of er-
rors. Therefore it is important to understand what errors are made in a given method and
design the calculations to carefully control these errors. This in turn requires consistent
choices of input data such as basis sets, energy expressions, convergence criteria, cutoffs,
etc. In addition it may require comparisons of results between different codes, as well as
validation of the results against more advanced methods.

In computational modeling progress in validating methods has been made through
the design and development of a number of test sets. In practice the test sets are typically
small (on the order of a hundred atomistic systems) but they usually include typical as
well as known difficult systems for a particular property. Based on this diversity it is often
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assumed that methods that do well on these sets will work well in general. In practice
this assumption has to be somewhat qualified. In order for these tests to be readily usable
the test cases have to be reasonably small, so that the tests can be run quickly with
many different methods, codes and parameter choices. However, with increasingly large
atomistic systems can come increasingly severe numerical issues. Hence the performance
of a method on a small system may not be indicative for the performance on a large
system. These numerical problems are mainly discovered during applications that reach
beyond the scale of prior applications, simply for the reason that it is too expensive to
systematically test methods on large problems.

Training models is much less computationally expensive than calculating theoreti-
cal properties, thus making it an attractive solution. Once built, models can be used to
parse "on-the-fly" large amounts of experimental spectra. This is advantageous during
the course of an experiment at the beamline, where scientists typically only spend a few
four-hour sessions. Models can enable them to guide the course of their experiments and
correct it if needed by comparing their new data out of the detector with the predicted re-
sults. When this guidance becomes automated, and computationally driven methods steer
the course of experiments, the experiment itself is on the way to become autonomous,
a long-term goal of the materials science community. However, this will only become
possible when criteria for defining and evaluating reproducibility in ML results are well
established.

It is common knowledge that training a machine learning model multiple times, even
with the same data set, does not usually produce the same model, as different training
and testing errors are produced with each run. Several factors influence the randomness
introduced at training as seen in the previous section. Model hyperparameters, such as
network structure, layer number, neuron number, optimizer, learning rate, batch size,
epoch number, activation function, can be treated as a configuration file and easily written
into the trained model or an external file. Some platforms can now store hyperparameters
and models [29] but a common data model enabling reproducibility does not exist in
materials informatics.

In Table 1, we found that TensorFlow and PyTorch cannot reproduce exactly the
same model, while different versions of the same platform showed good reproducibility.
For lightGBM platform, different versions may or may not reproduce exactly the same
model. We would like to emphasize that our evaluations are only based on the specific
platforms and versions we test in this paper. Reproducibility across different platform
versions really depends on implementation updates of related functions for specific ver-
sions, such as optimizers and I/O. In other words, the fact that specific version pairs can
or cannot produce the same results may just be due to our accidental choice of version
pairs using the same or different implementations of related functions.

We also evaluated the reproducibility of the MLP and GBT based on some random
factors. Table 2 showed that GBT has better robustness than MLP, i.e., with certain ran-
domness, the accuracy of GBT is more consistent than MLP. It suggests that the per-
formance of GBT may be more stable than MLP in practice. Although this is generally
agreed upon in the ML community, no theoretical proof for it exists. In addition, the
best results in terms of accuracy are usually the ones reported, regardless of their robust-
ness to randomness. When ML results are re-used for additional conclusions or guiding
experiments, decisions based on both robustness and accuracy will be needed.
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With ML models, there are two general classes of errors. The first one that we inves-
tigated here concerns how the models perform when trained on the same training dataset
with the same hyper parameters. The second one (domain shift) refers to transfer learn-
ing or domain adaption and typically draws more attention from ML researchers [30].
Researchers study how models use a training dataset not necessarily representative of the
custom data to which models are applied. In our case, models trained on computational
structures are used to make predictions about experimental data. Our experiment shows
that the first class of errors should not be ignored by practitioners interested in applying
these models in their domain science.

5. Future work

In addition to evaluate the influence of the random factors of models in high level, it is
also interesting to explore the randomness in low level implementations, such cuDNN
deterministic factor. In addition, and independently of the model itself, system level con-
figurations, such as operation system, GPU drivers/library version, eg. CUDA, cuDNN
versions also influence the reproducibility of results. The provenance of model execution
needs to be extracted and made available.
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