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Abstract—This paper introduces a new computational visual-attention model for static and dynamic saliency maps. First, we use the

Earth Mover’s Distance (EMD) to measure the center-surround difference in the receptive field, instead of using the Difference-of-

Gaussian filter that is widely used in many previous visual-attention models. Second, we propose to take two steps of biologically

inspired nonlinear operations for combining different features: combining subsets of basic features into a set of super features using

the Lm-norm and then combining the super features using the Winner-Take-All mechanism. Third, we extend the proposed model to

construct dynamic saliency maps from videos by using EMD for computing the center-surround difference in the spatiotemporal

receptive field. We evaluate the performance of the proposed model on both static image data and video data. Comparison results

show that the proposed model outperforms several existing models under a unified evaluation setting.

Index Terms—Visual attention, saliency maps, dynamic saliency maps, earth mover’s distance (EMD), spatiotemporal receptive

field (STRF)

Ç

1 INTRODUCTION

VISUAL attention is an important mechanism in human
vision: Despite the relatively large field of view, the

human visual system processes only a tiny central region (the
fovea) with great detail [18], [30], [44], [45], [17], [23], [33],
[47]. This indicates that people usually focus on a small
number of salient points (or locations) when they view a
scene. Recently, developing computational models and
algorithms to simulate the human visual attention has been
attracting much interest in the computer vision society. An
inclusion of a computational visual-attention model can
substantially help address many challenging computer
vision and image processing problems. For example, object
detection and recognition can become much more efficient
and more reliable by examining only the salient locations and
ignoring large irrelevant background. Object tracking can
also benefit from visual attention by examining only the
spatiotemporally salient points. Because the neural mechan-
isms of the human vision system are still not fully known, it is

a very challenging problem to build a comprehensive
computational model that can well simulate the human
visual attention mechanism. In the past decades, psycholo-
gists, neurobiologists, and computer scientists have all
investigated visual attention from their own perspectives
and benefit from the progress made in the other fields [10].

Previous research has shown that there are two kinds of
visual attention mechanisms: bottom-up attention and top-
down attention [7]. The bottom-up attention searches for the
salient points based solely on the visual scene, i.e., image
data, and therefore it is usually task irrelevant. Many
computational visual-attention models developed in pre-
vious works are purely bottom-up [9] without assuming any
specific prior knowledge on the objects and/or background.
In specific applications where some prior knowledge is
available or can be learned from training samples, people
also include top-down mechanisms to improve the accuracy
of the salient-point identification. For example, in [43] global
scene configuration is used to guide the visual attention for
localizing specific objects, such as people. It is worth
mentioning that learning is not only used for top-down
attention. Many pure bottom-up attention models also use
learning to reveal some general knowledge that is applicable
to different kinds of images in different applications [5],
[14], [22], [29], [48]. In this paper, we focus on the pure
bottom-up attention without using any task-relevant knowl-
edge and without incorporating any learning components.

One of the most well-known bottom-up models for visual
attention was developed by Itti et al. [16]. In Itti’s model, an
input image is first decomposed into the intensity, color,
and orientation features in different image scales. A feature
map is then generated by calculating the strength of each
feature in each scale, where the feature strength at a point is
defined by the center-surround difference at this point. In

314 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

. Y. Lin and S. Wang are with the Department of Computer Science and
Engineering, University of South Carolina, Columbia, SC 29208.
E-mail: ywlin.cq@gmail.com, songwang@cec.sc.edu.

. Y.Y. Tang is with the Department of Computer and Information Science,
University of Macau, Macau and the College of Computer Science,
Chongqing University, Chongqing 400030, China.
E-mail: yytang@cqu.edu.cn.

. B. Fang, Z. Shang, and Y. Huang are with the College of Computer
Science, Chongqing University, Chongqing 400030, China.
E-mail: {fb, szw, hyh2009}@cqu.edu.cn.

Manuscript received 23 Feb. 2011; revised 12 Nov. 2011; accepted 19 May
2012; published online 22 May 2012.
Recommended for acceptance by S. Avidan.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-02-0123.
Digital Object Identifier no. 10.1109/TPAMI.2012.119.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on July 27,2021 at 18:31:03 UTC from IEEE Xplore.  Restrictions apply. 



Itti’s model, the center-surround difference is computed
using a Difference-of-Gaussian (DoG) filter. After that, three
conspicuity maps are constructed, one for each feature, by
combining the feature strengths across multiple scales.
Finally, these three conspicuity maps are linearly combined
to produce a master saliency map. Parkhurst et al. [31] find
that the saliency map produced by Itti’s model shows better
agreement with the human fixation points than that
produced by chance. Recently, Itti’s model has been
extended to incorporate features other than intensity, color,
and orientation. In [19], [38], dynamic saliency maps are
generated from a video sequence by considering the motion
feature. In [3], additional feature maps are constructed to
reflect the symmetry and the object size in the image and
then combined with other features to compute the master
saliency map.

In this paper, we propose several new improvements
over Itti’s model. First, we propose using the Earth Mover’s
Distance (EMD) to measure the center-surround difference
in the receptive field instead of using the DoG filter adopted
in Itti’s model. By comparing the histograms of the center
and surround regions, EMD can provide a more robust
measurement of their difference. Second, we propose using
nonlinear operations, instead of the linear summation in
Itti’s model, for feature combination. More specifically, we
propose to take two steps of biologically inspired nonlinear
operations for combining the different features: First
combining subsets of basic features into a set of super
features using the Lm-norm and then combining all the
super features using a Winner-Take-All (WTA) mechanism.
Third, to construct the dynamic saliency maps from an

input video, we extend the proposed model by computing
the center-surround difference in the Spatiotemporal
Receptive Field (STRF). These improvements are justified
by an apple-to-apple performance comparison against
several other existing visual-attention models in a unified
experiment setting. The diagram of the proposed visual-
attention model is illustrated in Fig. 1.

Recently, several new models have been developed for
the bottom-up visual attention. In [4], [5], Bruce and Tsotsos
measure the saliency using Shannon’s self-information
measure at each local image patch, where the feature of
the patch is derived from an Independent Component
Analysis (ICA) on a large number of patches in the image. In
[48], Zhang et al. proposed a model of Saliency Detection
using Natural Statistics (SUN), where a Bayesian inference
is used to estimate the probability that there is a target at
each location. Statistics on a large set of images are used to
determine the priors in the Bayesian inference. In [12], Harel
et al. described a Graph-Based Visual Saliency (GBVS)
model where spectral graph analysis is used for computing
the center-surround difference and its normalization. In
[13], Hou and Zhang proposed using the spectral residual
(SR) of an image as the saliency, where the spectral residual
is defined by the log spectrum of an image and its smoothed
version. In [14], Hou and Zhang further introduced a
Dynamic Visual Attention (DVA) model by maximizing the
entropy of the sampled visual features, where the entropy is
measured by the incremental coding length. In [2], Avraham
and Lindenbaum developed a validated stochastic model to
estimate the probability that an image part is of interest and
used this probability as saliency. In Section 5, we conduct
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Fig. 1. The diagram of the proposed visual-attention model.
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experiments to compare the performance of the proposed
model with these models.

This paper is organized as follows: In Section 2, we
introduce EMD and use it to measure the center-surround
difference, as indicated in box “1” in Fig. 1. In Section 3, we
discuss the two steps of nonlinear operations for combining
the basic features, as indicated in box “2” in Fig. 1. In
Section 4, we extend the proposed model to construct
dynamic saliency maps from a video. In Section 5, we
evaluate the performance of the proposed model on
standard datasets and compare its performance to several
existing visual-attention models, followed by a brief
conclusion in Section 6.

2 CENTER-SURROUND DIFFERENCE USING EMD

In Itti’s model, DoG filter is used to compute the center-
surround difference. In particular, DoG filter is implemen-
ted by applying a Gaussian filter to the image in different
scales and then computing their difference. In [11], Gao and
Vasconcelos suggest the use of the histogram difference
between the center and the surround as the center-
surround difference. Specifically, they suggest the use of
the KL divergence for this purpose. However, as a bin-by-
bin dissimilarity measure, the KL divergence considers
only the correspondence between the bins with the same
index and does not consider the information across bins. It
is also well known that the KL divergence is sensitive to the
selection of the bin size [37]. In this paper, we propose to
use EMD to compute the center-surround difference.

2.1 Earth Mover’s Distance between Two
Histograms

EMD was first introduced and used by Rubner et al. [36],
[37] for measuring the color and texture difference, where
the EMD is applied to the signatures of distributions rather
than directly to the histograms. A histogram can be viewed
as a special type of the signatures [28] and in this section,
we briefly overview EMD between two normalized histo-
grams (the total amount of a histogram is a constant, e.g.,
1) with the same number of bins [28].

Let us consider EMD between two histograms P ¼
fpi; i ¼1; 2; . . . ; ng and Q ¼ fqj; j ¼ 1; 2; . . . ; ng, where n is
the number of bins. We introduce another all-zero n-bin
histogram R and denote flow fij to be the amount that is
moved from the bin i in P to the bin j in R. EMD between P
and Q can then be defined as the minimum total flow
(weighted by the moving distance of each flow) that is
needed to make R to be identical to Q. Mathematically,
EMD between P and Q can be written as

EMDðP;QÞ ¼ min
ffij;i;j¼1;2;...;ng

Xn
i¼1

Xn
j¼1

fijdij;

subject to

Xn
j¼1

fij ¼ pi;
Xn
i¼1

fij ¼ qj; fij � 0; i; j ¼ 1; 2; . . . ; n;

where dij is the distance between the bins i and j. In this
paper, we simply use the L1 distance, i.e., dij ¼ ji� jj.

2.2 EMD Based on Weighted Histogram

If we directly construct the histograms of the center and
surround and then use the above EMD as the center-
surround difference, the spatial information of the pixels is
not considered. Intuitively, pixels near the border between
the center and its surround are more important than the
others for computing saliency. For example, let us consider
two center-surround regions in Fig. 2. For both of them, the
centerC is a circular disk with radius 100 and intensity 0, and
the surround S consists of three rings with outer radii 141,
173, and 200 pixels, respectively. Note that these three rings
are of the same area for both Figs. 2a and 2b. The intensity of
these three rings (from the outer ring to the inner ring) is 64,
90, and 220 in Fig. 2a and 220, 90, and 64 in Fig. 2b. Based on
intensity histograms, it is easy to find that the center-
surround differences in Figs. 2a and 2b are identical if we use
EMD directly. However, perceptually the center-surround
difference in Fig. 2a should be larger than that in Fig. 2b
because there is clearly a larger intensity change across the
center-surround border in Fig. 2a. In the following, we
address this issue by introducing weighted histograms for
both the center and the surround and then applying EMD to
the weighted histograms.

First, we define a normalized weight wð�Þ for each pixel i
in the center or the surround by

wðiÞ ¼ dCðiÞP
j2C dCðjÞ

; if i 2 center C

wðiÞ ¼ dSðiÞP
j2S dSðjÞ

; if i 2 surround S;

8>>><
>>>:

where dCðiÞ denotes the euclidean distance from pixel i to
the center of C and dSðiÞ denotes the shortest euclidean
distance from pixel i to the outer boundary of S, as
illustrated in Fig. 2a. Based on these weights, we construct
normalized weighted histograms for the center and the
surround, by using wðiÞ as pixel-i’s contribution to its
histogram bin. By applying EMD to the weighted histo-
grams of the center and the surround, we can achieve a
center-surround difference that puts more weight on the
pixels near their border. For example, the EMD-based
center-surround difference is 163.3668 for the case shown in
Fig. 2a and 87.3948 for the case shown in Fig. 2b by using
the weighted histograms.
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Fig. 2. An illustration of the motivation for constructing the weighted
histograms. (a) and (b) Two center-surround regions with the same
center-surround difference of 124.6667 when we use EMD on the
unweighted intensity histograms. However, their center-surround differ-
ences are different (163.3668 for (a) and 87.3948 for (b)) when we use
EMD on the proposed weighted histograms. In this illustrative example,
the histograms are constructed using 256 bins.
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Directly calculating EMD between two histograms is
computationally expensive, with a complexity of Oðn3Þ [28].
As mentioned above, we choose to use L1-based bin
distance dij and the normalized (weighted) histograms in
this paper. With these choices, Levina and Bickel have
proven that EMD equals the linear Wasserstein distance
[25], which can be efficiently computed by

EMDðHC;HSÞ ¼
Xn
i¼1

Xi
j¼1

HCðjÞ �
Xi
j¼1

HSðjÞ
�����

�����; ð1Þ

where HC and HS are the n-bin (normalized) weighted
histogram for the center and the surround, respectively.
Using (1), the EMD between two histograms can be
computed with a linear complexity of OðnÞ.

As shown in Fig. 3, we construct weighted histograms
based on different features (color, intensity, and orientation)
and in different image scales. For each feature in each scale,
we construct a feature map by calculating the center-
surround difference at each pixel using the above-men-
tioned EMD, i.e.,

IFf
l ðx; yÞ ¼ EMD

�
Hf
C;lðx; yÞ; H

f
S;lðx; yÞ

�
; ð2Þ

where IFf
l denotes the feature map of feature f in scale l.

Hf
C;lðx; yÞ and Hf

S;lðx; yÞ denote the weighted histograms of
the center and the surround at pixel ðx; yÞ in terms of
feature f in scale l.

3 FEATURE COMBINATION

Combining the feature maps for different features and from
different scales is a very important component in visual
attention [10]. In Itti’s model [16], [17], [18], [46], feature
maps for one feature in different scales are first linearly
combined into a conspicuity map for this feature. Con-
spicuity maps for different features are then combined
linearly into a master saliency map. In this paper, we first
combine different features in each scale into a saliency map
and then combine the saliency maps from different scales
into a final master saliency map. When combining the

saliency maps from different scales, we follow Itti’s model
by simply using the linear combination with equal
contribution from different scales [16]. In this section, we
focus on describing a biologically inspired model for
combining the feature maps of different features into a
saliency map in each scale.

Our proposed feature combination model is inspired by
the primary visual cortex (V1) model proposed by Li and
Koene [26], [24]. V1 is the simplest, earliest, and best
studied visual area in the brain. The V1 model is a
biologically based model that describes how the V1 neural
responses can create a saliency map. Specifically, in the V1
model, saliency at a specific location is determined by the
V1 cell with the greatest firing rate by following a Winner-
Take-All mechanism. Additionally, some V1 cells only
respond to a single feature and the others may be tuned to
more than one feature. The latter are usually called feature
conjunctive cells [26]. For example, there are CO cells that
can respond to both color and orientation [24].

As illustrated in Fig. 4 [24], there are two major
differences between the V1 model and Itti’s model for
feature combination. First, the feature combination is linear
in Itti’s model while it is nonlinear in the V1 model. Second,
basic features (e.g., color, intensity, orientation) are directly
combined in Itti’s model, while according to the V1 model,
some features may be associated to reflect the feature-
conjunctive cells (e.g., CO and MO in Fig. 4) before they are
combined with other features to generate the saliency map.
Recently, people have found problems of using the linear
feature-combination model. Poirier et al [32] pointed out:
“... incremental changes in homogeneity had a greater effect
on saliency when homogeneity was high than when it was
low. This effect was observed both within and between
dimensions. A purely additive combination (e.g., [17]) can
therefore be ruled out, and models assuming such a
combination rule would need to be updated to account
for the current results.” In [35], Riesenhuber and Poggio
also found that MAX-like mechanisms at some stages of the
circuitry seem to be more compatible with neurophysiolo-
gical data than the linear summation mechanism with equal
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Fig. 3. An illustration of the pipeline of constructing the feature map for each feature in each scale.
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weights. In [26], Li also pointed out that neither the neural
mechanisms nor the exact underlying cortical areas respon-

sible for the feature and saliency maps have been clearly
specified in the linear summation model.

In this paper, we follow the V1 model to develop a model
for nonlinear feature combination, as shown in Fig. 5. Given

the set of N basic features (e.g., color, orientation, intensity),

F ¼ ff1; f2; . . . ; fNg;

we construct a set of ~N super features,

~F ¼ f~f1;
~f2; . . . ; ~f ~Ng;

where each super feature ~fi represents a subset of features in
F . If ~fi contains more than one basic feature, it models the
response of a feature conjunctive cell, such as CO and MO.

In [42], To et al. used the Lm-norm1 for combining the
perception of the complex and suprathreshold visual
elements in naturalistic visual images. Specifically, the
Lm-norm [39], [42] over n real numbers ai, i ¼ 1; 2; . . . ; n, is

defined by

Xn
i¼1

ami

 !1=m

;

where m is a preset summating exponent. Following this

model, in this paper we use the Lm-norm to construct
superfeature maps IF

~f
l , ~f 2 ~F , from the involved basic

feature maps by

IF
~f
l ðx; yÞ ¼

X
f2~f

�
IFf
l ðx; yÞ

�m2
4

3
5

1=m

: ð3Þ

We then use the WTA mechanism for combining the super
features, i.e.,

SSlðx; yÞ ¼ max
~f2 ~F

IF
~f
l ðx; yÞ; ð4Þ

where SSl is the derived saliency map in scale l.
Note that if we only construct one super feature that

involves all the basic features and use the Lm-norm with

exponent m ¼ 1, the above nonlinear feature combination

model is degenerated to the linear feature combination
model. In this paper, we consider three basic features of
color, intensity, and orientation as in most previous visual-
attention models and as suggested in [42], set the summat-
ing exponent m ¼ 2:8 in constructing super features. We
construct two super features:

~f1 ¼ fColor;Orientationg;
~f2 ¼ fIntensityg:

The super feature ~f1 reflects the CO tuned cells in the V1
model. We choose intensity itself as a separate super feature
without associating it to other basic features because there is
no evidence of any intensity-tuned cells [10]. In Fig. 6,
we show the different saliency maps generated from a
sample image when using the Lm-norm or linear summa-
tion for constructing super features. Note that, compared to
the feature combination of directly taking the maximum
over these three basic features, our construction of super
features puts a relative lower weight on the intensity feature
because the Lm-norm of the color and orientation features is
always larger than or equal to the maximum of these two
features. In the later experiments, we show that these two
super features lead to better visual attention performance
than the other possible ways of superfeature construction.
Fig. 7 summarizes the proposed nonlinear feature combina-
tion in a scale.
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Fig. 4. An illustration of the differences between (a) the linear feature-combination used in Itti’s model and (b) the nonlinear feature combination in the

V1 model. This figure was adapted from [24].

1. In [42], this nonlinear operator was called Minkowski summation.
However, in mathematics, Minkowski summation usually indicates the
dilation of two sets in geometry. To avoid confusion, in this paper we call it
Lm-norm instead of Minkowski summation. Fig. 5. An illustration of the proposed feature combination model.
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4 CONSTRUCTING DYNAMIC SALIENCY MAPS FROM

VIDEO

Videos provide information to construct dynamic saliency
maps over time. In this section, we extend the computation
of the center-surround difference from a single static image
to a sequence of image frames to construct a dynamic
saliency map. Using the center-surround difference for
saliency map reflects the function of the Receptive Field (RF)
in neurophysiology [8]: Classical RF has a roughly circular,
center-surround organization [15], as shown in Fig. 8. There
are two primary configurations: One is shown in Fig. 8a,
where the RF center is responsive to bright stimuli and its
surround is responsive to dark stimuli, and the other one is
shown in Fig. 8b, where the RF center is responsive to dark
stimuli and its surround is responsive to bright stimuli.

While the RFs in spatial coordinates are widely used, the
RF organizations are not actually static. When examined in
the space-time domain, the RFs of most cells in the geniculo-
cortical pathway exhibit striking dynamics [6]. Recent
measurement techniques have made it possible to plot the
full spatiotemporal RF (STRF) of the neurons, which include
specific excitatory and inhibitory subregions that vary over
time [1], [6], [8]. As shown in Fig. 9a, an X-T (spatial x-axis
over the temporal t-axis) plot summarizes how the 1D spatial
organization of the RF changes over time. This X-T plot
typically exhibits a center-surround organization in space
and a biphasic structure in time. Panel A in Fig. 9a shows the

temporal response curves obtained by slicing through the
X-T data at the center of the RF, whereas panels B and C in
Fig. 9a show the spatial RF profiles determined at two
different times (t ¼ 60 ms and t ¼ 25 ms, respectively).
Fig. 9b shows the approximate construction by thresholding
the X-T plot shown in Fig. 9a. We use this approximated
construction of the STRF profile for defining the center and
the surround in the space-time domain. Note that the regions
in the top left and top right of Fig. 9a are not reflected in
Fig. 9b because the corresponding excitatory is low (see
Panel B) and is ignored after the thresholding.

From Fig. 9b, we can see that, in the STRF, a surround is
made up of two parts: a spatial surround and a temporal
surround. The difference between the center and the spatial
surround reflects the static saliency and the difference
between the center and the temporal surround reflects
the motion saliency. Combining both of them, we can derive
the dynamic saliency at each location in the space-time
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Fig. 6. An example to illustrate the use of the Lm-norm for constructing super features. (a) An input image. (b) The resulting saliency map when using
the linear summation to construct the super feature fColor;Orientationg. (c) The resulting saliency map when using the proposed Lm-norm (m ¼ 2:8)
for constructing the super feature fColor;Orientationg.

Fig. 7. An illustration of the proposed nonlinear feature combination model on the three basic features of color, intensity, and orientation.

Fig. 8. An illustration of the spatial RF structure of neurons.
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domain. Specifically, at a spatiotemporal location ðx; y; tÞwe
define the center C and the surround S in the STRF as

Cðx; y; tÞ ¼ fðx0; y0; t0Þjmaxðjx� x0j; jy� y0jÞ < rC;

0 < t� t0 < tCg;
Sðx; y; tÞ ¼ fðx0; y0; t0ÞjrC < maxðjx� x0j; jy� y0jÞ < rS;

0 < t� t0 < tCg
[ fðx0; y0; t0Þjmaxðjx� x0j; jy� y0jÞ < rC;

tC < t� t0 < tSg;

where rC and rS define the center and the surround
spatially, and tC and tS define the center and the surround
temporally, as illustrated in Fig. 10.

At each spatiotemporal location, we construct the feature
maps by using EMD based on the weighted histograms as
described in Section 2 (see (1) and (2)). For the feature
selection, superfeature construction, and feature combina-
tion, we use the same methods as described in Section 3 (see
(3) and (4)).

5 EXPERIMENTS

As in many previous works, we use Bruce’s data [4], [5]
for evaluating the visual-attention performance on static
images and Itti’s data [20], [21] for evaluating the visual-
attention performance on videos. Bruce’s data consist of
120 color images, on each of which a set of human-eye
tracking fixations and a human density map (blurred
fixations) are provided as the ground truth for evaluation.
Itti’s data consist of 50 original video clips and 50 MTV
video clips that are constructed by dividing and reassem-
bling original video clips. On each of these video clips, a
set of fixation points is provided as the ground truth for
evaluation.

For the proposed model, we use three basic features:
color, intensity, and orientation. For the calculation of these
features, we follow Itti’s model: two color features r� g and

b�minðr; gÞ, one intensity feature rþgþb
3 , and four orientation

features constructed by applying Gabor filters along four
orientations f0�; 45�; 90�; 135�g, with r, g, and b being the
original RGB color values. In constructing the super features,
we set the summating exponent m ¼ 2:8. Weighted histo-
grams are constructed with 16 bins for computing the EMD-
based center-surround difference in all our experiments.
In handling static images, i.e., Bruce’s data, we set the
boundary of the center to be a 3� 3-pixel square and the
outer boundary of the surround to be 7� 7-pixel square. For
each static image, we also construct an image pyramid with
five scales and then use the four coarser scales (i.e.,
excluding the original scale) for computing saliency maps.
In handling videos, i.e., Itti’s data, we set rC ¼ 1 pixel, rS ¼ 3
pixels, tC ¼ 1 frame, and tS ¼ 3 frames. For each video clip,
we also construct a spatial pyramid with five scales and then
use the three coarsest scales for computing the dynamic
saliency maps.

On Bruce’s data, we compare the performance of the
proposed model with several other existing visual-attention
models, including Itti’s model (using the implementation at
http://www.klab.caltech.edu/~harel/share/gbvs.php),
the GBVS model [12], the model of Attention based on
Information Maximization (AIM) [5], the Spectral Residual
model [13], the DVA model proposed in [14], the SUN
model [48], and the Esaliency model [2]. On Itti’s data, we
compare the performance of the proposed model with the
performance of Itti’s model [16], the Variance model [34],
and the Surprise model [20], [21].

Many previous works reported the performance on
Bruce’s data using the ROC curves and their Area Under
Curve (AUCs): The master saliency map is first thresholded
to a binary map, which is then compared to the ground
truth for determining the true-positive rate (TPR) and the
false-positive rate (FPR). By varying the threshold for the
master saliency map, we construct an ROC curve. However,
we found that the AUCs reported on the previous works
may not be directly comparable because of the following
two reasons:
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Fig. 9. An illustration of the STRF organization. (a) A sample STRF

profile (X-T plot), adapted from [6]. (b) Approximate construction of the

STRF profile (X-T plot).

Fig. 10. An illustration of the center and the surround used in the
proposed method for deriving a dynamic saliency map.
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1. In some previous works, AUCs are produced by
directly using the fixation points as the ground truth
(e.g., [48]), while in other works they are produced by
using the human density map as the ground truth
(e.g., [14]). In addition, when using the human
density map as the ground truth, we first need to
select a threshold to make it a binary map. We found
that different thresholds Td may have to be used for
generating the binary map and producing AUCs
reported in previous works.

2. Center bias has been known to be a serious issue in
visual attention: The regions near the image center
are more likely to be salient than the regions near the
image perimeter [40], [41]. As listed in Table 1, some
previous models take advantage of the center bias
and some do not [48].

Table 1 summarizes the specific settings we found that can
obtain the previously reported AUCs on Bruce’s data for
several comparison models, including the AIM model [4], [5],
the DVA model [14], and the SUN model [48]. For the DVA

LIN ET AL.: A VISUAL-ATTENTION MODEL USING EARTH MOVER’S DISTANCE-BASED SALIENCY MEASUREMENT AND NONLINEAR... 321

TABLE 1
AUCs of the Proposed Model and the Comparison Models on Bruce’s Data under Their Own Settings

TABLE 2
AUCs of the Proposed Model and Other Comparison Models on Bruce’s Data under Four Unified Settings

Where the Center Bias Is Removed

Setting 1 uses the fixation points as the ground truth and Settings 2, 3, and 4 use the human density map as the ground truth, with thresholds Td ¼ 0,
0.1, and 0.2, respectively. For each setting and each model, we try different blurring factors to the obtained saliency maps to achieve the best
average AUC over Bruce’s data.
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model [14], the AUC reported in the previous work is
obtained by using the human density map as the ground
truth, but the thresholdTd used for generating this AUC is not
given. We test different Tds and find that Td ¼ 0:15 can lead to
an AUC of 0.7911, which is very close to the one reported in
the previous work [14]. For the AIM model [5], we could not
achieve the previously reported AUC of 0.7810 by using
fixation points as the ground truth. However, we find that by
using the human density map as the ground truth with Td ¼
0:15 we can get a very similar AUC of 0.7800 for the AIM
model. We cannot get exactly the same AUCs reported in the
previous works because of the possible different implemen-
tation details such as the density of the points for generating
the ROC curve. In Table 1, we also give the AUCs of Itti’s

model under three different settings. We cannot tune the
settings to get the AUC of Itti’s model reported in [48] because
we are using a different implementation, which implicitly
introduces a center bias. For the SR model [13], the GBVS
model [12], and the Esaliency model [2], there are no
previously reported AUCs on Bruce’s data. We simply
use the fixation points as the ground truth and include the
resulting AUCs in Table 1. In this table, we also report the
AUC of the proposed model under two different settings:
“Proposed Model” indicates the model as described above
without any additional processing and “Proposed with Bias”
indicates the altered proposed model where a center bias is
introduced by multiplying the resulting master saliency map
by a Gaussian kernel
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Fig. 11. Master saliency maps generated by the proposed model and the comparison models on a set of images. From the top row to the bottom row

are the original image with fixation points (in dark crosses) and saliency maps produced by Itti’s model [16], the GBVS model [12], the SR model [13],

the DVA model [14], the AIM model [4], [5], the SUN model [48], the Esaliency model [2], and the proposed model, respectively.
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where ðx0; y0Þ is the coordinate of the image center and �x
and �y are set as the one-fifth of the image width and
height, respectively. From Table 1, we can clearly see that
different evaluation settings can lead to completely differ-
ent AUCs, even for the same model. For example, when
using the human density map to evaluate Itti’s model,
different Tds result in different AUCs. In addition, introdu-
cing a center bias (either explicitly or implicitly) can
substantially change the resulting AUCs. For example, the
AUC of the proposed model increases from 0.7403 to 0.8365
by introducing a center bias. Therefore, it is not meaningful
to compare the performance of different models by
examining their AUCs from different settings.

To conduct an apple-to-apple comparison, we propose a

unified setting by directly using the fixation points as the

ground truth and removing the center bias using an

additional processing developed in [48]. In particular, when

computing the AUC on one image we take the ground-truth

fixation points on this image as positive samples and the

ground-truth fixation points on all the other images, i.e., the

remaining 119 images excluding the evaluated image in

Bruce’s data, as negative samples. In addition, in many

previous works, the obtained master saliency maps are

usually blurred by a Gaussian filter when they are evaluated

against the ground-truth fixation points or human density

maps. In Table 1, all the reported AUCs are obtained by

using the default settings in respective software packages.

Therefore, we used their default blurring factors, i.e., the
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TABLE 3
AUCs of a Variety of Altered Models to Justify Individual Components of the Proposed Model

Fig. 12. The average AUCs over Bruce’s data for each model when using different blurring factors to smooth the master saliency map. All these

AUCs are obtained under unified Setting 1, i.e., directly using the fixation points as the ground truth and removing the center bias using an additional

processing developed in [48].
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standard deviation of the Gaussian filter. By using a different
blurring factor for smoothing the obtained saliency map, we
may get a different AUC. To achieve a fairer comparison, for
each compared model, we exhaustively try all possible
blurring factors in the range of 0 to 10 percent of the image
width, and pick the optimal blurring factor that leads to
the best average AUCs over Bruce’s data for this model. The
column “Setting 1” of Table 2 shows such best average AUCs
of the proposed model and other comparison models under
this unified setting. Fig. 11 shows the master saliency maps
generated by the proposed model and these comparison
models under this setting. We can see that, on the first image,
the proposed model can better recognize the saliency of
the ball than most other models. On the third image, the
proposed model can better recognize the saliency of the
water pipe than most other models.

For comparison, the columns “Setting 2,” “Setting 3,”
and “Setting 4” of this table show the best average AUCs of
these models under other three unified settings where the
center bias is removed but the human density map is used
as the ground truth, with thresholds Td ¼ 0, 0.1, and 0.2,
respectively. As in the previous works, we also include their
standard errors. We can see that the AUCs usually increase
with the increase of Td. Therefore, we suggest the direct
use of the unified Setting 1, i.e., using the fixation points as
the ground truth, for performance evaluation. Fig. 12 shows
the average AUCs over Bruce’s data for each model, when
using different blurring factors in Setting 1. We can see that,

with the increase of the blurring factor, the average AUC
increases initially but drops later for each model.

We also conduct experiments to justify each newly
developed component of the proposed model under the
above-mentioned unified setting, i.e., Setting 1 in Table 2.
Starting from Itti’s model, we construct a set of altered
models, each of which only incorporates a subset of our
newly developed components and the resulting AUCs are
summarized in Table 3. In Table 3, “Nonlinear” indicates the
altered model where we only use the proposed nonlinear
feature combination but not the EMD-based center surround
difference in Itti’s model. “KL+Linear” indicates the altered
model in which we use KL-divergence for computing the
center-surround difference and the linear summation for
feature combination. “KL+Nonlinear” indicates the altered
model in which we use KL-divergence for computing the
center-surround difference and the proposed nonlinear
operations for feature combination. “EMD” indicates the
altered model where we only use EMD for the center-
surround difference, but not the proposed nonlinear feature
combination. “EMD+Nonlinear+MAX” indicates the altered
model where all the components are the same as the above
proposed model except that the MAX operator instead of
linear combination is used for combining salient maps from
different scales. “EMD+Nonlinear without Lm-norm” in-
dicates the altered model where all the components are the
same as the above proposed model except that a linear
summation instead of the Lm-norm is used for superfeature
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TABLE 4
AUCs of the Altered Models by Using Different Super Features

TABLE 5
Performance of the Proposed Model and Three Comparison Models on Itti’s Data
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construction. For clarity, we also include the AUCs of Itti’s
model and the proposed model in this table. In Table 3, the
column “AUC (blurring factor optimized for each model)”
shows the best average AUC when each model or altered
model uses its own optimal blurring factor. The column
“AUC (blurring factor optimized for Proposed Model)”
shows the average AUCs when all the models and altered
models use a same blurring factor that leads to the best
average AUC for the proposed model. By comparing to the
performance of Itti’s model, we can see that the introduction
of each new component leads to an improved performance.
By comparing to the performance of the proposed model, we
can see that the integration of all these new components lead
to a further improved performance. By comparing the
performance of “EMD+Nonlinear+MAX” and the perfor-
mance of the proposed model, we can see that the use of a
MAX operator cannot produce a better performance than the
linear summation for combining the saliency maps from
difference scales.

Furthermore, we conduct experiments to justify the
proposed biologically inspired super features. Specifically,
we alter the proposed model by using different super
features and evaluate the performance, also under the
above-mentioned unified setting, i.e., Setting 1 in Table 2.
Given three basic features of intensity, color, and orienta-
tion, there are, in total, five different cases to construct the
super features, as shown by Case 1 through Case 5 in
Table 4. Note that the super features shown in Case 5 are
the ones we use for the proposed model. In Case 6, we
construct the orientation feature from color instead of from
intensity. More specifically, we apply the same Gabor filters
along the four directions f0�; 45�; 90�; 135�g to the two color
feature maps and then take the average of filtering results
along each direction to construct the orientation feature,
which is then combined with the intensity feature by using
a WTA mechanism. As before, the column “AUC (blurring
factor optimized for each case)” shows the best average

AUCs when each case uses its own optimal blurring factor.
The column “AUC (blurring factor optimized for Proposed
Model)” shows the average AUCs when all the cases use a
same blurring factor that leads to the best average AUC for
the proposed model. We can see that the use of the
proposed super features produces a better performance
than using the other super features. Note that in this
experiment we always use the proposed nonlinear opera-
tions for feature combination.

In evaluating the proposed model on Itti’s data, we use
two measures. First, just like the evaluation on Bruce’s data,
we compute AUCs by using the fixation points as the ground
truth. Second, by following [20], [21], we construct two
histograms: one for the fixation points and the other for a set
of randomly selected points, in terms of the saliency
computed by a visual-attention model, and then calculate
the KL-divergence between these two histograms as a
performance measure. The larger the KL-divergence, the
better the performance. Table 5 shows the performance of the
proposed model and three comparison models, on 50 original
clips and 50 MTV clips, respectively. For AUCs, we show the
average and the standard error over the respective clips. For
KL-divergence, by following [21] we repeat the random
sampling 100 times to get the average and standard error.
Fig. 13 shows the histogram pairs constructed for computing
the KL divergence in this performance evaluation [21]. Note
that here Itti’s model for constructing the dynamic saliency
maps uses the additional motion and flicker features [20],
[21]. We can see that the proposed model produces better
performance than the comparison models in terms of both
AUC and the KL divergence. Fig. 14 shows the selected
frames of the generated dynamic saliency maps. On the first
video, we find that the proposed model can better recognize
the high saliency of the two walking persons.

We run all our experiments in a Thinkpad laptop with a
dual-core 2.70 GHz Intel i7-2620 CPU and 4.00 GB memory.
The proposed model is implemented using Matlab. Average
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Fig. 13. Histograms constructed for evaluating the performance using the KL-divergence. Dark bins indicate the histogram for fixation points and

gray bins indicate the histogram for randomly selected points. (a) Histograms constructed for the original video clips. (b) Histograms constructed for

the MTV video clips. In both (a) and (b), four such histogram pairs are shown for the Variance model, Itti’s model, the Surprise model, and the

proposed model, respectively.
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running time is 12.53 seconds for processing a static image in
Bruce’s data and 7.59 seconds per video frame for processing
video clips in Itti’s data. The most time-consuming step is the
construction of the histograms for computing EMD-based
center-surround difference. Since this histogram construc-
tion and the computing of the EMD-based center-surround
difference are local operations, we expect they can be
substantially speeded up by using a GPU implementation.
It takes less time to process a video frame in Itti’s data than
process a static image in Bruce’s data because, as mentioned
above, we take coarser scales when processing videos.

6 CONCLUSION

In this paper, we developed a novel computational model for
visual attention. We first used the weighted histograms and
EMD for computing the center-surround difference. We also
developed a two-step nonlinear operation to combine
different basic features by following the findings in the
neurobiology discipline. We finally extended this model to
process videos for constructing dynamic saliency maps,
where the major step is to use the weighted histograms and

EMD for computing the spatiotemporal center-surround
difference. For performance evaluation, we investigated
different evaluation settings used in the previous works
and described a unified setting that can provide fairer apple-
to-apple comparison. We conducted experiments on both
Bruce’s dataset, which consists of static images, and Itti’s
dataset, which consists of video clips, and found that the
proposed model produces a better performance than many
existing models.
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Fig. 14. Selected frames of the dynamic saliency maps generated by the proposed model and the comparison models. From the left column to the
right column are the original frame and saliency maps produced by Itti’s model [16], the Surprise model [20], [21], and the proposed model,
respectively.
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