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This paper proposes a novel method for visual saliency detection based on an universal probabilistic

model, which measures the saliency by combining low level features and location prior. We view

the task of estimating visual saliency as searching the most conspicuous parts in an image and extract

the saliency map by computing the dissimilarity between different regions. We simulate the moving of

Furthermore, multiscale analysis is adopted for improving the robustness of our model. Experimental

results on three public image datasets show that the proposed approach outperforms 18 state-of-the-art

methods for both salient object detection and human eye fixation prediction.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Human visual system has a remarkable ability to pay more
attention to some conspicuous regions or objects in natural
complex scenes, due to the fact that it cannot fully process the
tremendous amount of input visual information [1]. This ability,
viewed as visual attention, plays an essential role in extracting
and analyzing the important visual stimuli in many engineering
applications. In order to find out an analogous model mimicking
human selective attention mechanism, researchers in physiology,
psychology and computer vision have been making a good
effort for a long time and proposed many computational models.
Generally, a saliency map is used for illustrating salient regions
with higher values, in contrast to background regions with lower
values. As a consequence, the saliency maps calculated by various
models are widely used in many computer vision and pattern
recognition applications, such as image segmentation [2], object
detection [3], object recognition [4,5], image or video quality
assessment [6,7], image fusion [8], video compression [9] and
object tracking [10].

Over the past decade, many different methods have been
proposed to estimate visual saliency, which typically transform
a given input image into a scalar-valued map [11]. They can be
ll rights reserved.

.

broadly classified as biologically inspired [12], purely computational
[13,14], and a combination of both [15]; as frequency domain based
[16], spatial domain based [17], and both considered [18]; as for
static images [19], for dynamic video [20] and for both [21,22];
and as parametric [23] and non-parametric [24]. Recently, a lot of
saliency models tried to extract saliency maps based on mathema-
tical or statistical principles that address the purpose of the
computation [14,25–28]. These principles come from information
theory, mathematical tools, and statistical analysis, and describe
consistent properties as the definition from neural and psychophy-
sical experiments. Furthermore, by defining visual saliency at each
location as the dissimilarity between itself and its local neighbor-
hood or global counterparts, many state-of-the-art models estimate
visual saliency in terms of block or region [17,29–36]. These
methods are efficient because they present the dissimilarity of a
block or region by various meaningful weighted distances, which
may more accord with the human visual system. Generally speak-
ing, an actual region with similar features can attract more attention
than a single pixel, and we are more likely to notice a large region
than a small one with the same conspicuity, which is similar to the
‘‘large scale bias’’ presented in [15].

The work proposed in [12,37,38] suggested that human visual
system scans the scene both in a rapid, bottom-up, saliency-
driven, and task-independent manner as well as in a slower,
top-down, volition-controlled, and task-dependent manner. Most
research papers estimate visual saliency in a bottom-up way,
which usually utilizes different low level visual features. The most
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influential computational framework for estimating visual saliency
was proposed by Itti et al. [12], which implemented and further
developed the physiologically inspired saliency-based model of
visual attention introduced by Koch and Ullman [37]. Under the
hypothesis that visual attention is attracted by various local features,
Itti et al. proposed a unified framework with three steps: feature
extraction, contrast computation and map combination. Different
features like color, intensity, and orientation at different scales were
first extracted respectively, and a single conspicuous map was then
formed by applying the center-surround operation across scales to
compute the contrast value. Finally, conspicuous maps over different
scales in different feature space were summed to obtain the master
map. Many following saliency models used the same or similar
architecture [13,15,39,40]. Walther et al. [39] further developed Itti’s
model, and proposed a biologically plausible model of forming and
attending to proto-objects in natural scenes. Harel et al. [13] used
the same features as in Itti’s model, built fully connected graph
over all locations and assigned different weights between nodes to
compute saliency maps in each feature map over different scales.
Valenti et al. [40] directly viewed the extracted curvature, isocenters
and color edges maps over scales as saliency maps and then
combined them linearly. The model of Lin et al. [15] adopted a
similar framework as Itti’s model, whereas it added a local entropy
feature map and measured the center-surround difference using the
Earth Mover’s Distance (EMD) based on weighted histogram. Aziz
and Mertsching [29] categorized the feature computation methods
in the attention models into three classes: pixel-based, frequency
domain and region-based approaches, and generated the saliency
map by incorporating five feature channels using the rarity criteria.
Based on the stochastic model and some observations, Avraham and
Lindenbaum [30] used a graphical model approximation to evaluate
which regions are more likely to be salient bystarting with a rough
pre-attentive segmentation. Recently, Wang et al. [41] incorporated
near-infrared clues into the detection framework to form the multi-
spectral saliency detection method, and Perazzi et al. [42] estimated
the complete contrast and saliency using high dimensional Gaussian
filters.

In our approach, we view an image as a set of regions, and obtain
visual saliency in a unified probabilistic model. We estimate visual
saliency in a bottom-up, task-independent way similar to most
popular methods, so our model starts from the simple assumption
that visual saliency is closely related to features and locations, and
builds up a probabilistic model to indicate these two key factors. We
Fig. 1. Different sample images and ground truths for different tasks. (a) Ground tru

corresponding images (left). (b) Ground truths for human fixation prediction [25]. Th

interpretation of the references to color in this figure caption, the reader is referred to
assume that these two elements are independent to each other, and
construct two functions represent their conditional probabilities
respectively. Moreover, based on the central bias introduced by [43],
we propose a center shift process which mimics the moving of
human visual field. In addition, multiscale analysis is given for
improving the performance on searching the saliency at different
scales. As a result, our algorithm is not only more robust than other
saliency models, but also more biologically plausible.

Generally, ground truths are necessary for a unified compar-
ison and analysis to evaluate the performance of various visual
saliency models. Concluding from ground truths given by some
popular datasets and the applications of current various saliency
models, we categorize the basic tasks into two groups, salient
object detection and human fixation prediction. Some visible
examples are illustrated in Fig. 1. For salient object detection,
which prefers finding out important, conspicuous and even
meaningful regions in the complex natural scene, the proposed
model needs to emphasize more on the whole regions of salient
objects than on some isolated pixels. Meanwhile, for human
fixation prediction, one may lay particular stress on highlighting
any conspicuous clutter, even when no obvious object exists in
the scene. Theoretically, an ideal saliency model can complete
both tasks perfectly. However, most methods do not have satis-
factory effectiveness on both tasks, while our proposed model
performs better than 18 state-of-the-art methods on both tasks,
because we view regions as prime elements and consider a center
shift process. More details are discussed in Section 3.

The rest of this paper is organized as follows. Section 2
introduces the proposed framework for estimating visual sal-
iency. Section 3 evaluates the proposed approach comparing with
18 sate-of-the-art methods in both salient object detection and
human fixation prediction. Conclusions are given in Section 4.
2. The proposed approach

In this section, we describe the details of the proposed
approach. First, we present an universal probabilistic model for
visual saliency estimation, which, in our method, is composed of
feature-based visual saliency and location-based visual saliency.
After that, we simulate a shifting process of the center of the
visual field, which is called center shift, and then present the
multiscale analysis.
ths for salient object detection [14]. The masks (right) are ground truths for the

e red crosses (right) are ground truths for the corresponding images (left). (For

the web version of this article.)
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2.1. The probabilistic model

Human visual system always instinctively searches the most
conspicuous parts in the visual field, which is achieved by estimating
the importance of regions at every location. We propose that a
probability of a region, which represents its importance, is the
visual saliency.

We consider an image as a set of regions R, fr1,r2, . . . ,rNg,
where N is the total number of regions, segmented by a graph-
based image segmentation algorithm [44], which is a widely used
method also used in [34,45]. For each region ri, a saliency value Sri

is estimated, and all of the values corresponding to different
regions compose the whole image saliency map. Suppose that a
random variable Vri

denotes that region ri is salient, and Bri
is a set

of factors which results in the visual saliency value Sri
. Further-

more, Sri
could be a conditional probability of Vri

given Bri
, that is,

Sri
¼ PðVri

9Bri
Þ. It is an universal model to estimate visual saliency.

Usually, the two involving key problems are what factors influ-
ence the saliency value and how they work. Many biological and
mathematical methods have launched thorough researches. In
our method, we conclude from various existing saliency models
and experimental results, and then consider two important
factors, feature and location. We let a random variable Fri

denote
visual features observed at region ri, and let a random variable Lri

denote the location of region ri. Then the saliency value of region
ri, Sri

, is defined as

Sri
¼ PðVri

9Fri
,Lri
Þ ð1Þ

For the same consideration of simplicity as in [46], we assume
that features and locations are independent, and then the defini-
tion can be rewritten as

Sri
¼ PðVri

9Fri
ÞPðVri

9Lri
Þ ð2Þ

By formalizing the saliency as Eq. (2), we suggest that the
saliency value of any location in an image depends on two factors
involving features and locations. As long as the probabilistic
model may express the relationship between the two factors
and real visual saliency, or describe the same monotonicity,
the model is reasonable and efficient. To create such a model,
we need to analyze how these two different factors act on the
saliency.

The first term of Eq. (2), PðVri
9Fri
Þ, represents a conditional

probability of possible saliency value given observed features Fri
.

Obviously, it mainly depends on what features we choose. The
chosen features may be discriminative enough to distinguish the
conspicuous parts from their surroundings, which is consistent
with the definition of human visual conspicuity in [46]. In our
method, according to this principle, we utilize the dissimilarity,
measured by the weighted color contrast and spatial distance
among regions, to form the description of low level features.

The second part, PðVri
9Lri
Þ, describes the relevance between the

location and the saliency, which is called location prior [46]. It is
independent of visual features and reflects the locations that the
observer probably notice without any influence of image content.
We adopt the central bias theory [43] to show that observers pay
more attention to the regions closer to the center of the visual field.

Let FðFri
Þ and FðLri

Þ denote the two terms PðVri
9Fri
Þ and

PðVri
9Lri
Þ respectively, so the Eq. (2) may be rewritten as

Sri
¼FðFri

ÞFðLri
Þ ð3Þ

To generate the probabilistic model, we construct the two func-
tions FðFri

Þ and FðLri
Þ respectively based on their corresponding

implications. The details are discussed below.
2.1.1. Feature-based visual saliency

It is conventional to compute the saliency map using various
low level features, such as color, intensity and orientation [12],
and the ultimate goal is to measure the similarity or dissimilarity
between different regions or pixels by local or global ways. As
aforementioned, given a region ri, we estimate the dissimilarity
contrast to all the other regions by both the color and spatial
distance,

FðFri
Þ ¼

PN
j ¼ 1 oðriÞDcðri,rjÞDsðri,rjÞ

max
PN

j ¼ 1 oðriÞDcðri,rjÞDsðri,rjÞ
ð4Þ

where N is the total number of regions, oðriÞ is the weight of
region ri, Dcðri,rjÞ is the color dissimilarity between regions ri and
rj, and Dsðri,rjÞ is the spatial distance between regions ri and rj. The
denominator is for the purpose of normalization. We set oðriÞ

to be the number of pixels in region ri to emphasize contrast to
bigger regions, which follows the principle that human pays more
attention to big salient objects than small ones [15].

We utilize a popular method [33,34] to measure the color
contrast and the spatial distance. The definition of the color
contrast Dcðri,rjÞ is as follows:

Dcðri,rjÞ ¼
XNi

k ¼ 1

XNj

l ¼ 1

pci,k
pcj,l

Jci,k�cj,lJ ð5Þ

where Ni and Nj is the number of colors in region ri and rj

respectively, ci,k is the k-th color in region ri, cj,l is the l-th color
in region rj, pci,k

is the probability of the color ci,k among all Ni

colors in region ri, pcj,l
is the probability of the color cj,l among all

Nj colors in region rj, and Jci,k�cj,lJ is the Euclidean distance
between the color ci,k and cj,l in CIE Lab color space. To reduce the
computational complexity, a quantization operation is necessary
[34]. Each channel of the RGB color space is first quantized to 12
different values, and then frequently occurring colors which cover
more than 95% of the image pixels are chosen. After that, we
transform RGB color space into Lab color space for further computa-
tion according to Eq. (5).

The weighted spatial distance Dsðri,rjÞ is defined as

Dsðri,rjÞ ¼ exp �
JCri
�Crj

J

d

� �
ð6Þ

where Cri
and Crj

is the center of region ri and rj respectively,
JCri
�Crj

J is the Euclidean distance between two centers, and d
controls the strength of spatial distance which is set to be 0.4 as in
[33,34].
2.1.2. Location-based visual saliency

The central bias [33,43,47] proves that observers pay most
attention to the center. To demonstrate the location prior and
emphasize more on the center of the visual field, we employ a
two dimensional anisotropic Gaussian function to describe how
locations conduct the conspicuity,

FðLri
Þ ¼ exp �

ðxc�x0Þ
2

2s2
x

þ
ðyc�y0Þ

2

2s2
y

 !( )
ð7Þ

where ðxc ,ycÞ is the center of region ri, ðx0,y0Þ is the center of the
visual field, and s2

x and s2
y are variances along the two directions

respectively. In all of our experiments, s2
x is set to 0:5Wim and s2

y

is set to 0:5Him, where Wim and Him are the width and height of
the image respectively. As expressed in Eq. (7), we give a formal
description to draw the relationship between location and sal-
iency, which involves only a center and two parameters s2

x and
s2

y . We introduce a center shift process to describe the effect of
the moving of the center in Section 2.2.
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2.2. Center shift

As argued in [43], when searching the scenes for a conspicuous
target, fixation distributions are shifted from the image center
to the distributions of image features. We simulate the shifting
process of human fixations, and draw the fact that the center
of the visual field plays an important role. We call this process
center shift. Suppose that we look for salient regions in an
arbitrary visible scene. We throw a glance first and naturally fix
Fig. 2. An illustration of the center shift process. (a) The original image. (b) The

ground truth.

Fig. 3. Comparison of saliency estimation results for various methods with our approac

on Itti98 [12], Bruce06 [25], Zhai06 [54], Harel07 [13], Hou07 [16], Hou08 [21], Zhang08

Wang10 [27], Cheng11HC [34], Cheng11RC [34], Li11 [18], Murray11 [28], Hou12 [51]
our attention more on the center of the scene, and then our
attention is attracted by some distinctive image features
(color, luminance, texture, and so on) rapidly, so the center of
visual field shifts toward the conspicuous regions. For example, as
illustrated in Fig. 2, when we take a look at this image uncon-
sciously, we first fix our eyes on the initial center habitually.
However, since the distinct black part appears on the right side,
we quickly transfer our attention to the black region, so the center
of this black region becomes the new center of the visual field.
From Fig. 2(b) we can see that the shifted center is more mean-
ingful and effective while calculating the location-based visual
saliency by Eq. (7).

Therefore, the initial center of the visual field is fixed on the
center of the input image,

ðxi
0,yi

0Þ ¼
Wim

2
,
Him

2

� �
ð8Þ

where Wim and Him are the width and height of the image
respectively. Then the initial saliency map Si is obtained using the
initial center ðxi

0,yi
0Þ. We consider the intensity centroid of the initial

saliency map as the shifted center, which is also widely used in
other applications, such as invariant keypoint detector [48]. The
h on the MSRA dataset. Images are shown in the order of the original image, results

[46], Achanta09 [14], Seo09 [55], Achanta10 [50], Goferman10 [32], Rahtu10 [31],

and the proposed model, and the ground truth at the end.
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intensity centroid is measured by moments as follows:

ðxs
0,ys

0Þ ¼
m10

m00
,
m01

m00

� �
ð9Þ

where m00, m10 and m01 are defined uniformly by

mpq ¼
X
x,y

xpyqSi
ðx,yÞ ð10Þ

where Si
ðx,yÞ is the pixel value at (x,y) in the initial saliency map Si.

We compute Si at the small scale, which is mentioned in Section 2.3.
For simplicity and efficiency, we assume that the shifted center
plays the same role as the original center in location-based visual
saliency, so we keep the same parameter settings when calculating
visual saliency based on the shifted center.
Table 1
AUC scores of various saliency models on different datasets.

Saliency model MSRA YORK MIT

Itti98 [12] 0.6301 0.5755 0.5586

Bruce06 [25] 0.6994 0.7003 0.6906

Zhai06 [54] 0.7683 0.5553 0.5463

Harel07 [13] 0.8545 0.8078 0.8146

Hou07 [16] 0.7234 0.6769 0.6668

Hou08 [21] 0.8509 0.7764 0.7595

Zhang08 [46] 0.7457 0.6653 0.6676

Achanta09 [14] 0.8631 0.5493 0.5427

Seo09 [55] 0.7937 0.7364 0.7041

Achanta10 [50] 0.8934 0.6809 0.6770

Goferman10 [32] 0.8772 0.7795 0.7586

Rahtu10 [31] 0.9324 0.7249 0.7373

Wang10 [27] 0.8944 0.7938 0.7835

Cheng11HC [34] 0.9177 0.5841 0.5772

Cheng11RC [34] 0.9636 0.7512 0.7573

Li11 [18] 0.8250 0.7128 0.7243

Murray11 [28] 0.7904 0.7470 0.7058

Hou12 [51] 0.7599 0.7021 0.6794

Proposed 0.9744 0.8173 0.8243
2.3. Multiscale analysis

Multiscale analysis is conventional and useful for estimating
visual saliency, and it is widely used in many literatures
[12,15,22,32]. Human visual system can adaptively capture a
salient object in the visual field no matter what size the object
is. In addition, attention on small scale images focuses on a whole
object with same features, while attention on large scale images
cares more about the local details. Particularly, estimating visual
saliency at smaller scale makes an integrate object more con-
spicuous because it ignores some very small regions with incon-
sistent features by segmenting the downsampling image. Hence
we extract visual saliency over different scales.

For simplicity and efficiency, we consider two different scales
with scale factors sl ¼ 1 and ss ¼ 0:2, which means the same
operations are implemented on both the original image and 1/5
size (both the height and the width) of the original image. First,
the initial saliency map Si based on the initial center of the visual
field ðxi

0,yi
0Þ is estimated at the small scale, and then the shifted

center is computed by Eqs. (9) and (10). Finally, we measure two
different saliency maps at two different scales.
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Fig. 4. ROC curves of various salienc
It is worth noting that we only need to recompute the location
prior FðLri

Þ using the shifted center ðxs
0,ys

0Þ when we reestimate
the saliency map at the small scale, because the other part FðFri

Þ

may be saved from obtaining the initial saliency map Si. There-
fore, in the actual implementation, the process of calculating the
shifted center increases no more computation than working out
the location prior.

The ultimate saliency map, also called the master saliency
map, is obtained by

S¼ aSlþð1�aÞSs ð11Þ

where a is a weight parameter and we set it to be 0.5 in our
experiments, Sl and Ss are the saliency maps calculated at both the
large and the small scales.
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3. Experimental results

In this section, we evaluate our approach on three public
image datasets and compare with other 18 state-of-the-art saliency
models. First, we introduce the public available datasets used in
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Fig. 5. Precision–recall curves of various s
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our experiments. Then, by using commonly used validation
approaches, we give the performance of the proposed method and
various saliency models for reference on two different tasks, i.e.
salient object detection and human fixation prediction. Finally,
the discussion is given.
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Fig. 7. Comparison with region based contrast method (RC [34]).
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3.1. Image datasets

We apply our method on three public available image datasets
to evaluate its performance, and divide the experiments into two
parts based on two different research purposes.

The first dataset, named as MSRA [14], contains 1000 color
images with accurate pixel-wise object-contour segmentations,
which is selected from a 5000 images dataset [19] with rectangular
segmented object annotations by nine observers. These images are
collected mostly from image forums and image search engines, and
each image contains at least one salient object or one distinctive
foreground object in simple or complex scenes. These salient objects
differ in category, color, shape, size, and so on. In other words, there
is no more prior knowledge or constraint on these objects except
that they are the most salient. For the reason that a bounding box-
based ground truth is far from accurate [49], Achanta et al. [14] took
a subset of 1000 images, and recommended to use binary masks
which exactly described salient regions. Henceforth, many saliency
models for detecting or segmenting salient object evaluate their
performance on this image database [31,34,35,50].

The second one, called YORK, is introduced in [25]. There are
120 images including indoor and outdoor scenes in the dataset,
some with very salient items, others with no particular regions of
interest. Eye fixations of 20 subjects are recorded for each image.
These subjects are positioned 0.75 m from a 21 CRT monitor and
given no particular instructions except to observe the images. All
the image sizes are 681�511 pixels. This dataset is widely used
for predicting and tracking human eye fixation [13,21,46,51].

The last image database, denoted as MIT, is proposed by [47]
for predicting where humans look. There are 1003 natural images
containing different scenes and objects, collected from Flickr
creative commons and LabelMe [52]. The corresponding eye
tracking data from 15 users who free viewed these images are
also recorded. The dimension images ranges from 405 to 1024.
There are 779 landscape images and 228 portrait images. Also
some recent research work pays much attention to this database
[28,33,53].

For the reason of generalization and universality, we evaluate our
proposed approach and compare with other 18 saliency models
based on the MSRA dataset for detecting salient object, and based on
the YORK and the MIT datasets for the task of human fixation
prediction. We denote these 18 methods Itti98 [12], Bruce06 [25],
Zhai06 [54], Harel07 [13], Hou07 [16], Hou08 [21], Zhang08 [46],
Achanta09 [14], Seo09 [55], Achanta10 [50], Goferman10 [32],
Rahtu10 [31], Wang10 [27], Cheng11HC [34], Cheng11RC [34],
Li11 [18], Murray11 [28] and Hou12 [51], respectively. We use the
same parameters of our proposed model in all experiments and all
results of other methods are obtained by executing their corre-
sponding public available softwares or codes.

3.2. Experiments

Based on the MSRA dataset, we generate the saliency maps
with our approach and compare with other 18 methods and
ground truths. Some results are illustrated in Fig. 3. The results
of Itti98 and Hou08 lack conspicuous regions, and extract only
a small part of the salient object. Bruce06, Harel07, Hou07,
Zhang08, Seo09, Geforman10, Wang10 and Hou12 care more
about local abrupt changes so they can only capture edges of
objects. Zhai06, Achanta09, Achanta10, Li11, and Murray11 pay
attention to the whole region of the salient object, but they either
miss large parts of salient objects, or produce unreasonable or
diffuse maps. By contrast, Rahtu10, Cheng11HC and Cheng11RC
perform better, but their results involve a lot of background
details. Obviously, our results are more closely similar to ground
truths.
For comparing the quality of different saliency maps, we first
utilize a widely used method, the receiver operating character-
istics (ROC) curve. In general, ROC curve is a useful tool to
visualize the performance of binary classifiers [56]. Besides, it is
the most prevalent criteria for evaluating the performance of
visual saliency models. Given a saliency map and a binary ground
truth mask, the true positives (TP), false negatives (FN), false
positives (FP) and true negatives (TN) can be calculated as
follows:

TP¼
XNim

i

jðSi,tÞMi

FN¼
XNim

i

jðt,SiÞMi

FP ¼
XNim

i

jðSi,tÞð1�MiÞ

TN¼
XNim

i

jðt,SiÞð1�MiÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð12Þ
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where Nim is the total number of pixels in the saliency map S, t is
the threshold for binarization, M is the binary mask and the
function jð�Þ is defined as

jða,bÞ ¼
1, aZb

0, aob

(
ð13Þ

Correspondingly, the false positive rate (FPR) is calculated as
FP/(FPþTN) and the true positive rate (TPR) is calculated as
TP/(TPþFN). By varying the threshold t from 0 to 255, furthermore,
the ROC curve for the saliency model is plotted as the FPR versus
TPR. For further quantitative comparisons, the area under the ROC
curve (AUC) is also calculated. Therefore, for a given dataset, the
mean FPR and TPR is computed for plotting the ROC curve for all test
data, and the mean AUC is also computed to demonstrate the overall
performance of the saliency model. The ROC curves of various
saliency models is shown in Fig. 4, and the corresponding AUC
scores are given in Table 1. Obviously, our method achieves a robust
ROC curve and a high AUC score. We achieve a AUC score 0.9744,
followed by the score 0.9636 obtained by Cheng11RC.

After that, we employ an another method, the precision and
recall (PR) curve, to measure the performance of different saliency
Fig. 8. Comparison of saliency estimation results for various methods with our approac

on Itti98 [12], Bruce06 [25], Zhai06 [54], Harel07 [13], Hou07 [16], Hou08 [21], Zhang08

Wang10 [27], Cheng11HC [34], Cheng11RC [34], Li11 [18], Murray11 [28], Hou12 [51] a

image are recorded human eye fixations. (For interpretation of the references to color
models. As argued in [57], a curve dominates in ROC space if and
only if it dominates in PR space, simple linear interpolation is
insufficient between points in PR space, and an algorithm that
optimizes the area under the ROC curve is not guaranteed to
optimize the area under the PR curve, we choose PR curve as
a further strong evaluator. Similarly, the precision is defined as
TP/(TPþFP), and the recall is TP/(TPþFN). Following the same
experimental setting as in [14,34], we vary the threshold from
0 to 255 on a given saliency map with saliency values in the range
[0,255], and compute the precision and recall at each value of the
threshold. The precision and recall curves are shown in Fig. 5. It
can be seen distinctly that the curve of our model demonstrates
better performance than the others.

Finally, in order to automatically detect the salient object, we
use an optimized threshold of each saliency model by maximizing
the F-measure of each model,

Tpr ¼ arg max Fb ð14Þ

where Fb is defined as

Fb ¼
ð1þb2

Þ � precision� recall

b2
� precisionþrecall

ð15Þ
h on the YORK dataset. Images are shown in the order of the original image, results

[46], Achanta09 [14], Seo09 [55], Achanta10 [50], Goferman10 [32], Rahtu10 [31],

nd the proposed model, and the ground truth at the end, where red crosses in the

in this figure caption, the reader is referred to the web version of this article.)
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For weighing the precision more than the recall, b2 is set to 0.3 similar
to the setting in [14,34]. That is, by obtaining the optimized threshold,
we compare the optimized detection result of each method without
adopting any other algorithms. The comparison results are shown in
Fig. 6. We can see that the optimized segmented results using our
approach significantly outperform other methods with Fb ¼ 84:54%,
precision¼87.96%, and recall¼74.84%, and the suboptimal result is
obtained by Cheng11RC with Fb ¼ 80:28%, precision¼83.74%, and
recall¼70.55%. In addition, most models obtain a higher precision
than the recall because we set b2

¼ 0:3 which emphasizes more on
the precision.

From experimental results shown above, we can see that our
model outperforms other methods. Especially, since we combine
the central bias and multiscale analysis into traditional feature
based method, and adopt an useful center shift process, our model
provides more reasonable results. To clearly point out the advan-
tage of our method, we compare with region based contrast
method in [34], which is the most effective salient object detector
in existing saliency models. Fig. 7 shows that the saliency maps of
our method extract clearer objects, and discard more irrelevant
details. The better performance may come from distinguishing
features, central bias, center shift and multiscale analysis.
Fig. 9. Comparison of saliency estimation results for various methods with our approach

Itti98 [12], Bruce06 [25], Zhai06 [54], Harel07 [13], Hou07 [16], Hou08 [21], Zhang08

Wang10 [27], Cheng11HC [34], Cheng11RC [34], Li11 [18], Murray11 [28], Hou12 [51] a

image are recorded human eye fixations. (For interpretation of the references to color
We use the eye-tracking data of the YORK and the MIT datasets to
evaluate our extracted saliency maps. Some saliency maps generated
by various saliency models are illustrated in Figs. 8 and 9. We can
see that our method provides more consistent salient regions
with human fixations. In addition, though Harel07 obtains rela-
tively better results, it does not concentrate enough on the center
of the fixations.

We also utilize the ROC curve and the AUC score as evaluators
of various saliency models. From Figs. 10 and 11 we can see that
our method provides better ROC curves on both the YORK and the
MIT datasets. Meanwhile, as can be seen from Table 1, we achieve
the highest AUC score 0.8173 and 0.8243 respectively, and the
suboptimal result is obtained by Harel07 with 0.8078 and 0.8146
respectively. In general, results of these models on the two datasets
are mainly consistent, which proves the reliability of the ROC curve
and the AUC score.
3.3. Discussion

As mentioned above, visual saliency estimation can be eval-
uated by binary masks including salient objects and recorded
on the MIT dataset. Images are shown in the order of the original image, results on

[46], Achanta09 [14], Seo09 [55], Achanta10 [50], Goferman10 [32], Rahtu10 [31],

nd the proposed model, and the ground truth at the end, where red crosses in the

in this figure caption, the reader is referred to the web version of this article.)
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Fig. 10. ROC curves of various saliency models on the YORK dataset.
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Fig. 11. ROC curves of various saliency models on the MIT dataset.
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human eye fixations, so we compare our approach with other
models based on both tasks. As illustrated by various experi-
mental results, existing saliency models concentrate only either
salient object detection or human fixation prediction, so they
may not perform well simultaneously. For example, Cheng11RC,
Cheng11HC and Rahtu10 achieve better performances for detect-
ing salient objects than other state-of-the-art saliency models, but
for predicting human eye fixations, their results are mediocre
even. On the contrary, the similar phenomenon also happens on
Harel07, Wang10, Goferman10 and Zhang08, which perform
better on human fixation prediction. However, our method per-
forms well on all three datasets, particularly on the MSRA dataset.
Three possible reasons are as follows. (1) We view regions
segmented by the graph-based image segmentation algorithm
as the prime elements in the image, which means that we first
coarsely partition all pixels into some meaningful regions with
similar low level features. This makes the consideration that the
saliency map is organized by meaningful regions with different
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saliency values. Obviously, it is more consistent with the way
human freely views scenes. (2) If there exists a salient object in a
natural image, our attention is attracted soon, while if there is no
salient object, we pay attention to the center of the visual
field and some non-meaningful regions with high dissimilarity
form their neighborhood. Some other saliency models give equal
importance to all pixels in the image, so that their saliency maps
highlight not only salient regions but also parts of background.
(3) The shifting process is important for visual saliency estima-
tion. As we mentioned in Section 2.2, human visual system
transfers its visual center from the center of the image to the
center of distribution of features. So our model based on a center
shift process outperforms other models which only emphasize the
image center all the time.
4. Conclusions

The most important problems involving visual saliency esti-
mation are what factors influence the saliency map and how they
work. We choose low level features and location prior as two key
factors to calculate the image saliency. Meanwhile, we propose a
center shift process to simulate the shift of human visual field. We
combine center shift and multiscale analysis to provide more
reliable saliency maps in various complex scenes, which is a
distinct difference comparing with existing saliency models. As a
result, our model outperforms 18 state-of-the-art saliency models
on both salient object detection and human fixation prediction.
Since we view regions as prime elements and consider center
shift and multiscale analysis, it is believed that our approach can
be applied to other large-scale datasets as well and to other
applications in pattern recognition and computer vision. How-
ever, robust visual saliency estimation in complex conditions is
still a challenge. Future work may focus on finding out more
meaningful physiological, psychological and mathematical evi-
dences, and combining more effective similarity measurement
methods. In addition, robust visual saliency detectors may be
used in many applications, such as video compression, image
segmentation, object tracking, and so on.
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