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Abstract—With the explosion of newly found proteins, it
is necessary and urgent to develop automated computational
methods for protein subcellular location prediction. In particular,
the problem of predictor construction for multi-location proteins
is challenging. Considering the main limitations of the existing
methods, we propose a hierarchical multi-label learning model
FHML for both single-location proteins and multi-location pro-
teins. In this model, feature space is firstly decomposed onto a
set of nonnegative bases under the nonnegative data factorization
framework. The nonnegative bases act as latent feature concepts
and the corresponding coefficients on these bases are views as
the new feature representation on the latent feature concepts.
The similar decomposition is later performed in label space, and
then the latent label concepts are extracted. Using these latent
concepts as hyperedges, we construct dual fuzzy hypergraphs
to exploit the intrinsic high-order relations embedded in both
feature space and label space. Finally, the subcellular location
annotation information is propagated from the labeled proteins
to the unlabeled proteins by performing dual fuzzy hypergraph
Laplacian regularization. In this work, our proposed method
is evaluated on eukaryotic protein benchmark dataset, and the
experimental results have shown its effectiveness.

I. INTRODUCTION

Proteins play an important role for organisms’ physiologi-
cal actions. In particular, the knowledge of proteins’ functions
will do great help for biology research and drug discovery. The
number of newly found proteins is dramatically increasing in
the last two decades. However, for a large part of these known
proteins, we do not know their functions. Furthermore, this gap
is becoming sharply wide with the explosion of newly found
proteins. To analyze a protein’s functions, the determination
of its subcellular locations is a greatly helpful step. This is
because proteins perform their appropriate functions only when
they are located in the correct subcellular locations [1]. The
traditional way to determine subcellular location of proteins
is performed by the three experimental approaches: cell frac-
tionation, electron microscopy and fluorescence microscopy.
However, these biochemical tests are time-consuming, costly
and subjective [2]. To tackle this problem, it is extraordinarily
desirable to develop automated methods to predict subcellular
locations of proteins accurately.

Many efforts have been paid for protein subcellular location
prediction in the past few years. These researches mainly focus
on how to effectively represent a protein and how to construct
prediction models. For feature extraction, most researches
extract three types of feature representation: the amino acid
composition, the sequence order and the physical chemistry

character. The first two feature types and their combination
are more commonly used. In this work, we adopt the direct
combination of the first two types of features to construct an
original feature space. So far, many computational methods,
such as K-nearest neighbor [3], support vector machines [4],
neural networks [5], and hidden Markov models [6] have
been applied for protein subcellular localization prediction.
However, the main limitations of these existing intelligent
techniques could be summarized as the following three points:

(1) The traditional methods assume that each protein resides
at only one subcellular location, and then they transform
the subcellular location prediction task into a single-
label classification problem. However, we notice that
some proteins may simultaneously exist in, or move
between two or more different subcellular locations. It
is necessary to take multi-location proteins into account
when constructing subcellular location predictors.

(2) Most of the methods which can deal with multi-location
proteins directly transform the multi-label problem into
multiple binary classification sub-problems for each class
label and finally integrate multiple independent outputs.
Obviously, this scheme ignores the label correlation. In
fact, each subcellular location is not isolated physiologi-
cally, and furthermore, they are correlated with each other.
We need to consider intra-label similarity and inter-label
diversity, which involves both feature space and label
space.

(3) The prediction models are constructed based on the direct
relation from extracted features to labels. In other words,
the traditional methods usually construct the simple two-
layer models. In fact, the hierarchical multi-layer pre-
diction models have been evaluated effectively in many
other patter recognition fields. It would be promising
to consider a hierarchical prediction model for protein
subcellular location prediction.

In this work, we deal with the task of subcellular location
prediction of multi-location proteins. To this goal, we construct
a three-layer hierarchical model as Fig. 1, which consists of
feature layer, latent layer and label layer. The middle layer
acts as the link between the feature layer and the label layer.
The extracted latent concepts perform as the dictionary items
which are commonly used in document analysis. Two normal
graphs are constructed within the feature layer and the label
layer, respectively. In the feature layer, the original features are
decomposed onto the latent concepts. A fuzzy hypergraph is
used to regularize the consistency between the original features
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and the intermediate latent codes. The other hypergraph is
constructed to regularize the annotation lists and the latent
codes. Above all, the annotation information is propagated
from the labeled proteins to the unlabeled proteins by the dual
fuzzy hypergraph regularized multi-label learning.

Fig. 1. The diagram of the proposed three-layer model

II. THE PROPOSED FHML METHOD

A. Problem Formulation

Given a protein database D = {I1, I2, . . . , In} of n
protein sequences, its corresponding annotation vocabulary
V = {V1,V2, . . . ,Vk} of k subcellular location labels in a
multi-label protein subcellular location prediction task. Each
protein Ii is represented by its original feature vector xi ∈
R

m for i = 1, 2, . . . , n. Then we have the protein dataset
X = [x1, x2, . . . , xn] ∈ R

m×n. Among these proteins in the
database, l proteins are annotated with one or more subcellular
location labels of the vocabulary V , and other u proteins are
not annotated. Here, l+u = n. Without loss of generality, we
assume that the first l proteins are labeled in advance by the

label indicator matrix ỸL = [ỹ1, ỹ2, . . . , ỹl] ∈ {0, 1}k×l. Each
ỹi is a multi-dimensional vector. The value of 1 indicates that
the protein Ii resides at the corresponding subcellular location
and the value of 0 indicates Ii has no probability to exist
in that location. We denote the output real-valued label score
matrix as Y = [YL YU ], and the final 0-1 label matrix as
Y ∗ = [Y ∗L Y ∗U ]

B. Latent Concept Learning

To construct the hierarchical structure, we need to extract
latent concepts first. Here, we use a similar technique of
dictionary learning originally applied in document analysis.
At first, we decompose the original multi-dimensional feature
space onto a set of nonnegative bases under the nonnegative
data factorization framework. The set of nonnegative bases can
be viewed as the learned latent feature concepts. Meanwhile,
the corresponding new feature representation on these latent
bases is also learned. As the case in face recognition, we
know that the extracted latent feature concepts are relevant
to the parts of the original holistic features. Thus, the obtained
new feature representation is localized on the latent feature
concepts. With the help of the obtained latent feature concepts,
the intrinsic relations embedded in feature space, i.e., feature
correlation, can be represented and exploited. Using the latent

concepts as the hyperedges, we construct a hypergraph in
feature space to capture the embedded intrinsic high-order
relations. In addition, a similar trick is applied in label space to
exploit its intrinsic relations, i.e., label correlations. And then
a similar hypergraph can be constructed in label space based
on the extracted latent label concepts. Finally, the three-layer
hierarchical model is constructed to deal with the multi-label
subcellular location prediction problem.

So, for the protein dataset X = [x1, x2, . . . , xn], formally,
we reconstruct it by using the linear combination of latent
feature concepts as X = DZ, where D = [d1, d2, . . . , dr] ∈
R

m×r is the latent feature concept basis matrix and Z =
[z1, z2, . . . , zn] ∈ R

r×n is the new feature representation
over the latent basis. In this work, the basis matrix D and
the coefficient matrix Z are both constrained as nonnegative
matrices. Each di acts as a latent feature concept and the
nonnegative column vector zj is used as the weight coefficient
vector of the jth protein belongs to each latent feature concept.
D and Z could be obtained under the dictionary learning
framework as follows,

min
D,Z

||X −DZ||2F
s.t. D, Z ≥ 0,

1TZ = 1T

(1)

The constraint 1TZ = 1T enforces each column zj to be
a normalized weight vector. Here, we call the new feature
representation Z as latent codes.

In addition, we also decompose the annotation vectors onto
the latent label concepts. For the protein dataset X , denote the
corresponding subcellular location annotation matrix as Y . For
Y , we define the prediction model from the latent codes to the
annotation vectors as follows:

Y = QZ (2)

where Q ∈ R
k×r and Q ≥ 0. Thus, the column vectors Q =

[q1, q2, . . . , qr] are regarded as the latent label concepts, and
Q is used as the codebook in label space. Here, we assume
Q = PD, where P ∈ R

k×m and P ≥ 0. Then, P is the
relation matrix which shifts the latent components from feature
space to label space.

Herein, the Y can be predicted by Y = PDZ. In addition,
the predicted labels of labeled data should be enforced to be
consistent with original labels. Mathematically, we should first
optimize the following objective function:

min
P,D,Y

λ1||Y − PDZ||2F + λ2||YL − ỸL||2F
s.t. P,D, Y ≥ 0

1TY = 1T

(3)

The last constraint 1TY = 1T normalizes each annotation vec-
tor to avoid the scaling problem. Moreover, this normalization
constraint ensures that we can substitute the standard inner for
the cosine similarity.

C. Dual Fuzzy Hypergraph Laplacian Regularization

We can view the above decomposition as this way: the
sample i is related to the latent feature concept j with the
non-zero weight zji, and the sample i is unrelated to the latent
feature concept j when the zji is zero. Herein, each protein
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sequence feature vector could be reconstructed by some latent
feature concepts; on the other hand, each latent feature concept
covers a subset of samples. The zji acts as a membership
degree of the protein i to the latent feature concept j. The
decomposition of label space could be explained in the similar
way. Naturally, the latent feature concept i could viewed to be
belonged to itself group completely. So we define its weight zDi
as a column vector with 1 in i-th entry and 0 elsewhere. The
the latent codes of the latent feature concepts can be define as
ZD = {zDi }r×r, and the latent label concepts share the same
codes ZD.

This viewpoint motivates us to employ a hypergraph to
represent these relations, in which a hyperedge covers a subset
of vertices. We construct fuzzy hypergraphs in feature space
and label space, respectively. Each latent concept corresponds
to a hyperedge, and the instances (i.e., feature vectors in
feature space, annotation vectors in label space) connected
to the latent concept belong to its corresponding hyperedge.
Here, the instance i is connected to the latent concept j if
its weight zji is non-zero. In feature space, we construct a
fuzzy hypergraph GF = (VF , EF ,WF ), where VF is the set
of vertices associated to protein features, EF is the set of
hyperedges associated to latent feature concepts and W is the
fuzzy degrees of vertices to hyperedges. Here, let WF = Z.
In this way, all the protein samples are organized by using
latent feature concepts on the fuzzy hypergraph. In label space,
we also construct a fuzzy hypergraph GS = (VS , ES ,WS),
where VS is the set of vertices associated to protein annotation
vectors, ES is the set of hyperedges associated to latent
label concepts and WS is the fuzzy degrees of vertices to
hyperedges. Here, let WS = Z. In this way, all the protein
annotations are also organized by the fuzzy hypergraph.

To capture the embedded intrinsic correlation, we perform a
novel regularization on this fuzzy hypergraph. The regulariza-
tion is based on the assumption that the proteins in the same
feature hyperedge have similar latent codes and the similar
latent codes yield similar annotations. This type of intrinsic
relations could be preserved by performing hypergraph Lapla-
cian regularization.

Following the star expansion algorithm, we transform the
initial fuzzy hypergraphs GF and GS into the two bipartite
graphs ĜF = (V̂F , ÊF ) and ĜS = (V̂S , ÊS) with the

adjacency matrices as ŴF and ŴS by introducing a new
vertex for each hyperedge. Then we could transform the dual
fuzzy hypergraph Laplacian regularization into the traditional
graph Laplacian regularization. The vertex set V̂F consists of
the initial vertices corresponding to protein feature vectors
and the new vertices corresponding to latent feature concepts,
i.e. V̂F = X̂ = [X,D]. The weight of each edge in GF is
inherited from the fuzzy membership degree of each vertex in
the hypergraph GF , i.e., the weight of each edge is defined as
the inner of the two joint vertices. The similarity matrix ŴF ,
whose entry Ŵij = x̂T

i x̂j measures the similarity between a
vertex pair (x̂i, x̂j), i.e.,

ŴF = X̂T X̂ =

[
XTX XTD
DTX DTD

]
(4)

We define the degree matrix as D̂F , which is a diagonal matrix
with D̂F

ii =
∑

j Ŵ
F
ij .

In the other hand, the vertex set of the bipartite graph ĜS

in label space is Ŷ = [Y,Q] = [y1, y2, . . . , yn, q1, q2, . . . , qr].
The pairwise similarity is measured by the inner ŷTi ŷj for
the pair (ŷi, ŷj). Thus, these pairwise similarity measures

constitute the following similarity matrix ŴS with ŷTi ŷj to
be the entry WS

ij .

ŴS = Ŷ T Ŷ =

[
Y TY Y TQ
QTY QTQ

]
(5)

Thus, we can extend the optimization problem (1) by
adding a graph Laplacian regularization term as follows:

min
D,Z

||X −DZ||2F + λ3tr(ẐL̂F Ẑ
T )

s.t. D, Z ≥ 0
1TZ = 1T

(6)

Define the Laplacian matrix L̂F = D̂F − ŴF .

In label space, the optimization problem (3) is extended by
adding a graph Laplacian regularization term as follows:

min
P,D,Y

λ1||Y − PDZ||2F + λ2||YL − ỸL||2F
+λ4tr(ẐL̂SẐ

T )

s.t. P,D, Y ≥ 0
1TY = 1T

(7)

where the Laplacian matrix L̂S = D̂S − ŴS

D. Multi-label learning formulation

By integrating all of the above two folds, the semisu-
pervised multilabel learning problem for protein subcellular
location prediction is formulated as a dual fuzzy hypergraph
regularized nonnegative data factorization problem in the fol-
lowing form:

min
P,D,Z,Y

||X −DZ||2F + λ1||Y − PDZ||2F
+λ2||YL − ỸL||2F + λ3Tr(ẐL̂F Ẑ

T )

+λ4Tr(ẐL̂SẐ
T )

s.t. P,D,Z, Y ≥ 0
1TZ = 1T , 1TY = 1T

(8)

The parameters λ1, λ2, λ3 and λ4 are used to balance the
contribution of each objective terms to the solution.

E. Solution

The cost function is not convex with respect to D, Z, P and
Y together. Thus, it is not realistic to find the global minima.
However, the cost function is strictly convex with respect to
each matrix variable block respectively. So, here we adopt the
common method which is to iteratively optimize the objective
function by alternatively minimizing over one matrix variable
while keeping the other three blocks fixed. Together with
the strict convexity of the objective function, we can deduce
that each subproblem has a unique minimum. Here, for the
nonnegative constraint, we employ the multiplicative iterative
algorithm used for NMF. For the sum-to-one constraint, an
effective technique in [8] is employed here. We use the
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matrices X̄ and D̄ to take the place of X and D as inputs,
which are defined as

X̄ =

[
X
δ1T

]
, D̄ =

[
D
δ1T

]
(9)

where δ adjusts the effect of the sum-to-one constraint. Sim-
ilarly, We use the following equation to replace the original
decomposition assumption Y = PDZ.[

I
δ1T

]
Y =

[
PDZ
δ1T

]
(10)

Here, we denote Ī =

[
I

δ1T

]
and S̄ =

[
PDZ
δ1T

]
. In this

work, δ = 20 is selected.

The Eqn. (9) and (10) are substituted into the problem (8).
We solve the new optimization problem by optimizing Z, D,
Y and P alternately with a set of multiplicative updating rule,
which guarantee the nonnegativity of the solution. Finally, we
can obtain the update rules for all variable matrix as follows:

Zt+1
ij = Zt

ij ×
(D̄T X̄ +AZ

1 +AZ
2 +AZ

3 )ij
(D̄T D̄Z +AZ

4 )ij
(11)

Dt+1
ij = Dt

ij ×
(AD)ij

(D(AD)TA)ij
(12)

Y t+1
ij = Y t

ij ×
(AY

1 +AY
2 )ij

(AY
3 )ij

(13)

P t+1
ij = P t

ij ×
(AP )ij

(P (AP )TP )ij
(14)

where

AZ
1 = λ1D

TPTY

AZ
2 = λ3(ZXTX + ZDDTX)

AZ
3 = λ4(ZY TY + ZDDTPTY )

AZ
4 = λ1D

TPTPDZ

AD = XZT + λ1P
TY ZT + λ3XZTZD + λ4P

TY ZTZD

AY
1 = λ1Ī

T S̄ + λ2ỸLĪ
T

AY
2 = λ4(Y ZTZ + PDZT

DZ)

AY
3 = λ1Ī

T ĪY + λ2Y

[
I 0
0 0

]
AP = λ1Y ZTDT + λ4Y ZTZDDT

From the above alternative update procedure, we obtain
the real-valued label score matrix Y . Then we need a cut-off
threshold to transform the score matrix into the 0-1 matrix
Y ∗. Thus, the final predicted label subset for each protein is
obtained. In this work, we employ the S-Cut technique to op-
timize the threshold based on the Hamming distance between
the actual label matrix ỸL and the predicted label matrix Y ∗L
of the labeled proteins. The whole proposed algorithm can be
summarized as following steps:

Algorithm — FHML

Input: protein dataset X , annotated label matrix ỸL

Initialization: Randomly choose D0, Z0, P 0 and Y 0 as
nonnegative matrices.
A. For t = 0, 1, 2, . . . , Tmax, do

1) For given D = Dt, P = P t, Y = Y t, update the
latent codes Z as Eqn. (11);

2) For given Z = Zt, P = P t, Y = Y t, update the
latent feature concept basis matrix D as Eqn. (12);

3) For given Z = Zt, D = Dt, P = P t,, update the
label ranking matrix Y as Eqn. (13);

4) For given Z = Zt, D = Dt, Y = Y t, update the
relation matrix P as Eqn. (14);

5) If ‖ Zt+1 − Zt ‖< ε, ‖ Dt+1 − Dt ‖< ε, ‖ Y t+1 −
Y t ‖< ε, and ‖ P t+1 − P t ‖< ε (ε is set as 10−3 in
this work), then break.

end
B. Optimize the threshold θ and perform cut-off on YU

Output: The predicted label matrix Y ∗U

III. EXPERIMENTS

The dataset S of Euk-mPLoc from the well-known package
Cell-Ploc 2.0 [9] with experimentally determined protein sub-
cellular localization is used as the benchmark dataset for the
current study. The dataset is built for eukaryotic proteins spe-
cially. It includes 7,766 different eukaryotic protein sequences,
covering 22 corresponding subcellular locations. In the dataset,
6,687 belong to one subcellular location, 1,029 to two lo-
cations, 48 to three locations, and 2 to four locations. Each
protein in the dataset has less than 25% sequence similarity
to any other in the same subcellular location group, which
makes it more reliable to compare our proposed method with
others. The dataset is obtained from the Online Supporting
Information S1 in [9].

We perform the 3-fold, 5-fold and 10-fold cross validation.
Each n-fold cross validation is repeated for ten times, where
all the proteins are randomly divided into n mutually exclusive
parts with approximately equal size and approximately equal
class distribution. The averaged results are reported in this
work.

As the case study of [10] suggested, we use the two types
of performance measures, i.e., example-based and label-based
measures. The example-based measures are F-measure and
Accuracy, and the label-based measures are Precision and
Recall. The definitions of these four measures follow those
presented in [10], which are different from the single-label
measures.

For a given protein sequence, the two types of features,
i.e., PseAAC and PSSM-ACT, are extracted and concate-
nated serially as its original high-dimension feature vectors.
These two types of features involve not only the amino acid
composition information but also the protein sequence order
information and sequence evolution information, which have
been demonstrated effective in many bioinformatics fields. The
detailed description of these two types of features can be found
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TABLE I. PERFORMANCE COMPARISON OF THE DIFFERENT METHODS IN THE THREE CORSS-VALIDATIONS

Method Precision Recall F-Measure Accuracy

3-fold

mKNN 0.5227±0.0013 0.4937±0.0011 0.7561±0.0019 0.7596±0.0020

mSVM 0.5190±0.0126 0.4965±0.0083 0.7424±0.0104 0.7663±0.0112

FHML 0.5285±0.0011 0.5082±0.0017 0.7709±0.0013 0.7748±0.0011

5-fold

mKNN 0.5226±0.0016 0.4965±0.0013 0.7688±0.0022 0.7619±0.0017

mSVM 0.5354±0.0074 0.5097±0.0105 0.7719±0.0128 0.7574±0.0124

FHML 0.5563±0.0012 0.5113±0.0007 0.7934±0.0010 0.7635±0.0013

10-fold

mKNN 0.5460±0.0009 0.5035±0.0010 0.7968±0.0011 0.7763±0.0013

mSVM 0.5395±0.0121 0.5081±0.0138 0.7834±0.0114 0.7798±0.0125

FHML 0.5642±0.0010 0.5279±0.0009 0.8160±0.0007 0.7913±0.0010

in [11]. In this work, the PseAAC and PSSM-ACT feature
vectors are both in 140-dimension.

From the existing publications, the commonly-cited meth-
ods able to deal with multi-location proteins in subcellular
location prediction are multi-label KNN (mKNN) in iLoc-
Euk [12] and multi-label SVM (mSVM) in [13]. These two
methods are constructed as the same in the references, while
their inputs are the PseAAC and PSSM-ACT features, which
is the same as our method, for a reliable comparison. Their
parameter selection is the same as the original references.
For our FHML method, the parameters λi’s and the number
of latent concepts r are optimized by using 3-fold cross
validation on the labeled set. The λi’s are tuned from 10−5 to
10−3. r is tuned from 50 to 500. We uniformly select twenty
values for each parameter range and select the highest one to
finetune. Here, λ1 = 0.00047, λ2 = 0.00182, λ3 = 0.00131,
λ4 = 0.00064 and r = 120.

Table I reports the experimental results of the three com-
pared methods on the four performance measures. From this
result, we find that mKNN and mSVM perform similarly, and
the proposed method outperforms the compared predictors on
the four measures in the three types of cross-validations. This
result evaluates the effectiveness of label correlation exploring.
In particular, the superiority of FHML is more significant when
the model receives more training samples. This fact would
suggest us that the more samples provide the more accurate
relations embedded in feature space and label space.

IV. CONCLUSION

We construct a three-layer hierarchical multi-label learning
model with dual fuzzy hypergraph regularization. We explore
the intrinsic relations not only in feature space but also in label
space. We conduct comparable experiments on the eukaryotic
protein dataset, and the experimental results have shown that
our work outperforms state-of-the-art protein subcellular loca-
tion prediction methods in terms of the four measures. Further
work would be focusing on the imbalance of class distribution
which frequently occurs in biochemical datasets.
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