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ABSTRACT

This paper introduces a new method to solve the cross-domain

recognition problem. Different from the traditional domain

adaption methods which rely on a global domain shift for

all classes between source and target domain, the proposed

method is more flexible to capture individual class varia-

tions across domains. We propose to solves the problem

by finding the compact joint subspaces of source and target

domain. We evaluate the proposed method on two widely

used datasets and comparison results demonstrates that the

proposed method outperforms the comparison methods.

1. INTRODUCTION

Traditional machine learning methods often assume that the

training data and testing data are from same feature space

and following similar distributions. However this assump-

tion may not be true in many real applications. Namely the

training data is obtained from one domain, while the testing

data is coming from a different domain. For example, Fig-

ure 1 shows coffee-mug images collected from four different

domains (Amazon, Caltech256, DSLR and Webcam), which

present different image resolutions, viewpoints, background

complexities and object layout patterns, etc. These domain

differences lead to a dilemma that 1) labeling data in each

domain for training would be expensive; and 2) directly ap-

plying the classifiers from one domain to another may result

in significant degraded performance [1]. The dilemma conse-

quently poses the cross-domain recognition problem, namely

how to utilize the labeled data in a source domain to clas-

sify/recognize the unlabeled data in a target domain.

To achieve cross-domain recognition, a number of Do-

main Adaptation (DA) methods have been developed to adapt

the classifier for one domain to another [2]. The existing DA

algorithms can be either in a (semi-)supervised domain way

or a unsupervised way, based on the availability of labeled

data from the target domain. (Semi-)supervised DA assumes

that there are some labeled data available in the target domain

[3, 4, 5, 6]. Recently, the subspace based DA has been found

to be effective to handle cross-domain problem [6, 7, 8, 9, 10].

They either constructed a set of intermediate subspaces for

modeling the shifts between domains [7, 8, 10], or generated

a domain-invariant subspace in which the data from source

and target domains can represent each other well [9, 6, 11].

Fig. 1. Sample images from four different domains.

All these methods mentioned above utilize the data from each

domain all together to generate a single subspace for each do-

main. In practice, however, the intrinsic feature shift of each

class may not be exactly the same. The existing methods can

obtain a global domain shift, but ignore the individual class

difference across domains.

To circumvent the limitation of the global domain shift,

we adopt a natural and widely used assumption that “the data

samples from the same class should lay on a low-dimensional

subspace, even if they come from different domains [12]”.

This assumption not only holds on many computer vision

tasks, e.g. [13], but also is used as a human cognitive mecha-

nism for visual object recognition [14]. Note that this assump-

tion doesn’t mean that the target data samples exactly lay on

the subspace of the source data points, since different domains

show subspace shift [10]. Figure 2 gives an illustration of a

compact joint subspace covering source and target domains

for a specific class. The source and target subspaces have the

overlap which implicitly represents the intrinsic characteris-

tics of the considered class. They have their own exclusive

bases because of the domain shift, such as the varying illumi-

nation or changing the view perspectives. Based on the above

assumption, we propose a new method that solves the cross-

domain recognition by finding the compact joint subspaces

of source and target domain. Specifically, we construct sub-

spaces for each of the classes in labeled source domain. Then

we construct subspaces in the target domain, called anchor

subspaces, by collecting unlabeled samples that are close to

each other and highly likely all fall into the same class. The
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corresponding class label is then assigned by minimizing a

cost function. We further construct the compact joint sub-

spaces for each class by combining the anchor subspace to

corresponding source subspaces. Finally, the SVM classifier

is trained using the samples in the compact joint subspace.

Fig. 2. An illustration of a compact joint subspace between source

and target domains for a specific class. This subspace consists of

overlap bases between domains, which represent the intrinsic char-

acteristics of this class implicitly, and exclusive bases of different

domains, which represent their own exclusive characteristics.

The contributions of this paper are: 1) by assuming that

the data samples from one specific class, even though they

come from different domains, should lay on a low dimen-

sional subspace, we generate one compact joint subspace for

each class independently. Each compact joint subspace car-

ries the information not only about the intrinsic characteristics

of the corresponding class, but also about the specificity for

each domain. 2) To construct the compact joint subspaces, we

first generate anchor subspaces in the target domain, assign la-

bels to them, and combine these anchor subspaces to the cor-

responding source subspaces. 3) We propose a cost function

that implicitly maximizes the overlap between source sub-

space and target subspace for each class as well as maintains

the topological structure in the target domain.

Note that we use the data samples themselves as the over-

complete bases to represent the subspace implicitly instead of

getting the orthogonal bases for the subspaces.

2. PROPOSED MODEL

Suppose two sets of data samples, {XS
i }

NS

i=1 ∈ Rd×NS and

{XT
i }

NT

i=1 ∈ Rd×NT are from source domain S and target

domain T , respectively, where d is the data dimension. The

labels of data samples in S, denoted as Y S = {ySi }
NS

i=1 ∈
RC×NS , are known, where C is the number of classes, ySi ∈
{0, 1}C is a C bit binary code of the ith data sample in source

domain. If this data sample belongs to class j, the jth bit of

ySi is 1 and all other bits are 0. Our aim is to estimate the

labels of data samples in the target domain Y T ∈ RC×NT .

The proposed algorithm consists five steps: (1) We con-

struct a set of subspaces MS
i = {XS

j |XS
j
∈Ci

}, one for each

class in the source domain, illustrated in Figure. 3(a). For

each class, we simply take all the data that belong to this

subspace as its over-complete bases. (2) We construct a num-

ber of anchor subspaces in the target domain, denoted as

Fig. 3. The overview of the proposed model. (a). Anchor subspaces

construction. Data samples in each circle denote a core subgroup

and they construct an anchor subspace as one row of black bars. (b).

Subspaces for each class in source domain. The bars with the same

color denote the bases of one class. (c). Compact joint subspaces

construction. The ellipses denote the bases from anchor subspaces.

{MT
i }Ki=1, by grouping target data samples with high simi-

larities. (3) We assign a label for each anchor subspace by

minimizing a cost function which reflects a) the cross-domain

distance between the anchor subspace and the corresponding

source subspace; and b) the within-domain topological rela-

tion of the anchor subspaces in the target domain. (4) We con-

struct compact joint subspace MSS
i = {MS

i ,M
T
j |MT

j
∈Ci

},

where Ci denotes the ith class, as illustrated in Figure. 3(c).

(5) We train one-vs-rest SVM classifiers for each class using

the labeled data in the compact joint subspace.

2.1. Anchor subspaces obtained in target domain

We construct each anchor subspace by selecting one target

data sample and combining its nearest neighbors. This way,

the obtained compact group of data samples are likely to be

from the same class [15]. Specifically, we first apply the K-

means algorithm to cluster all the target data into a large num-

ber of Z groups. We set Z = NT

γ
, where γ is the desired aver-

age group size. In each group of data, we find a compact core

subgroup consisting of a small number of N samples, which

are taken for constructing an anchor subspace. We construct

the core subgroup for the group L is constructed as follow.

First, we estimate the center of the core subgroup by find-

ing the data sample x∗ to minx∈L

∑

y∈N(N−1)(x)
‖x − y‖2,

where N(N−1)(x) denotes the N − 1 nearest neighbors of x

in L. Then, Take x∗ ∪ N(N−1)(x
∗) as the core subgroup for

constructing an anchor subspace.

2.2. Labeling each anchor subspace

We have constructed C subspaces in the source domain,

{MS
i }

C
i=1 and their corresponding labels, Y = {yi}Ci=1 ∈
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RC×C , in which the ith bit of yi is 1 and all the other

bits of yi are 0. In this section, we aim to assign class la-

bels Y ′ = {y′i}
K
i=1 ∈ RC×K for the K anchor subspaces

{MT
i }Ki=1 constructed in target domain.

2.2.1. Distance between subspaces.

To calculate the distance between two subspaces, princi-

pal angles are usually used [8, 16]. In this paper, fol-

lowed by [16], we define distance between two subspaces,

e.g. Mi with p data samples and Mj with q data sam-

ples as follow: we first orthogonalize both of them to

obtain Mi and Mj , and then calculate the distance as:

D(Mi,Mj) ,
∑min(p,q)

m=1 sin θm, where θm come from the

SVD of (Mi)
′ Mj , that (Mi)

′ Mj = U(cosΘ)V ′. We then

generate two affinity matrices, AST reflect the distances be-

tween anchor subspaces and source subspaces, ATT reflects

the pairwise distances among anchor subspaces, i.e., AST
ij =

exp

(

−
D(MS

i ,MT

j )

2σ2

)

and ATT
ij = exp

(

−
D(MT

i ,MT

j )

2σ2

)

,

where MS
i and MT

j denote the subspaces from the source

and target domains, respectively.

2.2.2. Cost function and optimization

Two important issues are considered in assigning a label to

each anchor subspace: 1) the distance between an anchor sub-

space and the same-label source subspace should be small,

and 2) the local topological structures in the target domain

should be preserved [17], i.e., anchor subspaces with shorter

distance are more preferable to be assigned to the same class.

We propose the cost function as follow:

C(Y ′) =

C
∑

i=1

K
∑

j=1

‖yi−y′j‖
2AST

ij +ρ

K
∑

j=1

K
∑

j′=1

‖y′i−y′j‖
2ATT

jj′

(1)

Adding a constant term
∑C

i=1

∑C
j=1 ‖yi − yj‖2Iij into C

and splitting the first term into two parts, the cost function C
can be written as:

C(Y ′) =

C+K
∑

i=1

C+K
∑

j=1

‖Yi − Yj‖
2Aij , s.t. Y

T
1 = 1. (2)

where Y = [Y, Y ′], A =

[

I 1
2A

ST

1
2

(

AST
)T

ρATT

]

. We also

relax the constraint to this cost function by only requiring the

sum of each row in Y to be 1.

By including the constraint term, the cost function can be

written in a matrix form [18]

L(Y, λ) = Tr
(

Y∆YT
)

+ λT
(

YT
1− 1

)

+
µ

2
‖YT

1− 1‖22,

(3)

where ∆ = D − C is the Laplacian matrix of A. λ ∈ RC+K

is the Lagrange multiplier. To minimize the objective function

L, we alternately update its two unknowns Y and λ:

(1) Having λ fixed, optimize Y by computing the deriva-

tive of L with the respect to Y and setting it to be zero:

∂L(Y, λ)

∂Y
= 0 ⇒ Y∆+1λT+µ

(

11
TY − 11

T
)

= 0. (4)

We first split the Laplacian matrix ∆ into 4 blocks along

the Cth row and column as in [19] ∆ =

[

∆CC ∆CK

∆KC ∆KK

]

,

and split λ to: λI = [λ1, · · · , λC ]
T and λII = [λC+1, · · · , λC+K ]T.

Then Y ′ can be updated by solving the following equation:

Y ′(k+1)∆KK + µ11TY ′(k+1) = µ11T − Y∆CK − 1λ
(k)T
II .

(5)

With this solution, Y(k+1) can be achieved by putting Y and

Y ′(k+1) together as Y(k+1) = [Y, Y ′(k+1)].
(2) Having Y fixed, perform a gradient ascending update

with the step of µ on Lagrange multipliers as:

λ(k+1) = λ(k) + µ
(

Y(k+1)T
1− 1

)

. (6)

We initialize λ(0) and Y ′(0) to be zero, and set the max-

imal number of iteration maxIter to be 10000. Finally, we

set the bit with the maximal value in each row to 1 and all the

other bits to 0 after we get Y ′.

3. EXPERIMENTAL RESULTS

In the section, we evaluate the proposed algorithm on two

widely used cross domain recognition datasets: object recog-

nition image dataset and sentiment classification dataset.

3.1. Cross-domain dataset for object recognition

The first dataset we evaluate on is a object recognition image

dataset, which including has four sub-datasets, i.e., Amazon,

DSLR Webcam and Caltech 1, which we use as four domains.

There are 2533 images from 10 classes in total. Following the

same way of feature extraction in previous works (e.g.[10]),

we use SURF [20] descriptor to extract features for each im-

age. We ran our algorithm 20 times for each task and give the

average accuracy rate (%) and standard deviation (%).

First, we report the results on single source- and target-

domain settings. It can be seen in Table. 1 that our algorithm

performs best in 6 out 8 domain pairs. We only show 8 pairs

out of 12 in total due to the page limitation, and we actually

reach the best performance in 9 out of 12 domain pairs. Note

that the “Metric” method [4] is a semi-supervised method.

Then we evaluate the performance when there are multi-

ple source or target domains. When there are multiple source

domains, as shown in Table. 2, it is clearly to see that the pro-

posed method outperforms all the comparison methods sig-

nificantly. For SGF [7], we report its performance under both

1For simplicity, hereafter we use “A”, “C”, “D” and “W” to denote the

“Amazon”, “Caltech”, “DSLR” and “Webcam” domains, respectively.
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Table 1. Results of single source and target domain on the object recognition dataset. “-” denotes that there is no resualt reported before.

Model C→A C→D A→C A→W D→A D→W W→A W→C

SGF [7] 36.8±0.5 32.6±0.7 35.3±0.5 31.0±0.7 32.0±0.4 66.0±0.5 27.5±0.5 21.7±0.4

GFK [8] 40.4±0.7 41.1±1.3 37.9±0.4 35.7±0.9 36.1±0.4 79.1±0.7 35.5±0.7 29.3±0.4

Metric [4] 33.7±0.8 35.0±1.1 36.0±1.0 21.7±0.5 30.3±0.8 55.6±0.7 38.6±0.8 32.3±0.8

ITL [21] 49.2±0.6 44.4±1.2 38.5±0.4 40.0±1.3 39.6±0.4 83.6±0.5 - -

SI [10] 45.4±0.3 42.3±0.4 40.4±0.5 37.9±0.9 39.1±0.5 86.2±1.0 38.3±0.3 36.3±0.3

SA(SVM) [11] 46.1 39.4 39.9 39.6 42.0 82.3 39.3 31.8

CJS (ours) 59.1±1.2 53.0±3.5 47.6±1.1 42.2±2.9 37.9±1.6 89.3±1.7 39.5±1.3 33.5±1.6

Table 2. The results of multi-source domain adaptation on the ob-

ject recognition dataset. Note that all the comparison methods are

semi-supervised domain adaptation ones.

Model D, A→W A, W→D W, D→A

SGF [7] (US) 31.0±1.6 25.0±0.4 15.0±0.4

SGF [7] (SS) 52.0±2.5 39.0±1.1 28.0±0.8

RDALR [9] 36.9±1.1 31.2±1.3 20.9±0.9

FDDL [22] 41.0±2.4 38.4±3.4 19.0±1.2

SDDL [6] 57.8±2.4 56.7±2.3 24.1±1.6

CJS (ours) 73.2±2.5 81.3±1.3 41.1±1.1

unsupervised (US) and semi-supervised (SS) settings. When

there are multiple target domains, we only find one compar-

ison method, SGF [7]. It can be seen that the proposed al-

gorithm performs better than both of unsupervised (US) and

semi-supervised (SS) settings of SGF.

Table 3. The results of multi-target domain adaptation on the object

recognition dataset.

Model W→A,D D→A,W A→D,W

SGF [7] (US) 28.0±1.9 35.0±1.7 22.0±0.2

SGF [7] (SS) 42.0±2.8 46.0±2.3 32.0±0.9

CJS (ours) 45.1±1.2 48.4±2.2 44.2±2.0

It is worth to mention that, based on our experiment,

the proposed algorithm is not sensitive to the following two

main parameters: the desired average size of each group con-

structed by using K-means algorithm, γ, and the number of

data samples in each anchor subspace, N . In our experiments,

we consistently set γ to be 20 and N to be 5.

3.2. Cross-domain dataset for sentiment classification

We also evaluate the proposed algorithm in a domain adap-

tation task from the natural language processing area. In this

task, customers’ reviews on four different products (kitchen

applications, DVDs, books and electronics) are collected as

four domains [23]. The goal of this task is adapt the classifier

training on one domain and use it for classifying data samples

in another domain. It is clear to see, in Table 4, that overall

the proposed algorithm outperforms other 7 methods.

Table 4. Domain adaptation results on the sentiment classification.

K: kitchen, D: dvd, B: books, E: electronics

Model K→D D→B B→E E→K

TCA [24] 60.4 61.4 61.3 68.7

SGF [7] 67.9 68.6 66.9 75.1

FGK [8] 69.0 71.3 68.4 78.2

SCL [25] 72.8 76.2 75.0 82.9

KMM [26] 72.2 78.6 76.9 83.5

Metric [4] 70.6 72.0 72.2 77.1

Landmark [27] 75.1 79.0 78.5 83.4

CJS (ours) 77.8 77.0 83.2 84.1

4. CONCLUSION

This paper introduces a new subspace based cross-domain

recognition algorithm. We construct compact joint subspace

independently for each class, which covers both source and

target domains. It carries the information not only about the

intrinsic characteristics of the considered class, but also about

the specificity for each domain. Classifiers are trained on

these compact joint subspaces. The proposed algorithm has

been evaluated on two widely used datasets. Comparison re-

sults show that the proposed algorithm outperforms several

existing methods on both datasets.
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