
1324 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 8, AUGUST 2019

Domain Adaptation for Convolutional Neural
Networks-Based Remote Sensing

Scene Classification
Shaoyue Song , Hongkai Yu, Zhenjiang Miao, Member, IEEE, Qiang Zhang,

Yuewei Lin, and Song Wang , Senior Member, IEEE

Abstract— Remote sensing (RS) scene classification plays an
important role in the field of earth observation. With the rapid
development of the RS techniques, a large number of RS scene
images are available. As manually labeling large-scale RS scene
images is both labor and time consuming, when a new unlabeled
data set is obtained, how to use the existing labeled data sets
to classify the new unlabeled images is an important research
direction. Different RS scene image data sets may be taken
from different type of sensors, and the images may vary from
imaging modalities, spatial resolutions, and image scales, so the
distribution discrepancy exists among different image data sets.
As a result, simply applying convolutional neural networks (CNN)
trained on source domain cannot accurately classify the images
on target domain. Domain adaptation (DA) can be helpful to solve
this problem. In this letter, we design a subspace alignment (SA)
and CNN-based framework to solve the DA problem in RS scene
image classification. A new SA layer is proposed and added into
CNN models for DA, which could align the source and target
domains in some feature subspace. Fine-tuning the modified
CNN model with the added SA layer makes the CNN model
adapt to the aligned feature subspace and helps to relieve the
domain distribution discrepancy. The experiments conducted on
two public data sets show that adding the SA layer into CNN
improves the scene classification on the target domain.

Index Terms— Convolutional neural networks (CNN), domain
adaptation (DA), remote sensing (RS), scene classification,
subspace alignment (SA).

I. INTRODUCTION

AS A fundamental problem in the tasks of understand-
ing high-resolution remote sensing (RS) imagery, image
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scene classification plays an important role in the field of earth
observation. Some works such as [1] and [2] concentrate on
the pixel-level analysis of the RS scene images, whereas our
task is the general scene image classification [3].

With the rapid development of the RS techniques in recent
years, a large number of RS scene images have been taken,
and many public RS-related data sets [3]–[6] are available.
However, manually labeling a large number of RS scene image
samples is both labor and time consuming. It is necessary to
study how to take advantage of the existing relevant labeled
data sets to classify the newly available unlabeled data sets.

To solve the problem of cross data set RS scene image
classification, the discrepancy between image data sets needs
to be considered. As different RS scene image data sets may
be taken from different type of sensors, the images in different
data sets may show different imaging modalities, resolutions,
and scales. There are always distribution differences among
different data sets. As a result, the domain distribution dis-
crepancy may be large from one data set to another.

Deep neural networks have become important tools in
the field of image classification recently. Some existing
works [7]–[9] have demonstrated that the pretrained deep
convolutional neural networks (CNN) learned from a large-
scale data set such as ImageNet [10] can be transferable
for image classification on other image data sets. However,
directly applying the pretrained CNN on the labeled data set
to classify the RS scene images on the unlabeled data set might
show low accuracy due to the domain distribution discrepancy.
To relieve the cross data set discrepancy, domain adaptation
(DA) is considered by adapting models trained on a source
domain to a target domain [11] in this letter, which is a special
technique for transfer learning. The labeled image data set is
considered as the source domain, and the new unlabeled image
data set is considered as the target domain. Typically, DA aims
to use the information from both the source and target domains
to reduce the domain discrepancy [12], [13]. The DA-based
RS scene classification problem is shown in Fig. 1.

In the RS scene classification, to adapt the RS image
data from the source domain to the target domain, some
CNN-based methods have been designed for DA recently [9],
[14], [15]. Castelluccio et al. [14] explores various training
modalities for transferring a pretrained deep CNN to the RS
data sets. With the results showed on two publicly available
RS data sets, the authors prove that CNN can provide an
excellent classification. Wang et al. [9] proposes a deep
CNN-based feature extraction framework and tries to form

1545-598X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on July 27,2021 at 18:14:32 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9854-0907
https://orcid.org/0000-0003-4152-5295


SONG et al.: DA FOR CNN-BASED RS SCENE CLASSIFICATION 1325

Fig. 1. RS scene classification with DA from source domain (labeled) to
target domain (unlabeled). The domain distribution discrepancy is considered
in DA.

a baseline for transferring pretrained deep CNN to other RS
tasks. Othman et al. [15] design a DA network composed of
pretrained CNN model and extra one hidden layer network for
tackling the cross-scene classification. Different with previous
methods, we design and add a new layer in CNN for DA in
this letter. Specifically, a new subspace alignment (SA) [12]
layer is proposed and added into CNN to relieve the domain
distribution discrepancy. The new added SA layer can be
used for DA to improve the classification. As a represen-
tative algorithm for DA, SA learns transformation matrices
to align the features between source and target domains on
some subspace. Previous SA methods, like [12], are based on
dimension reduction and feature mapping, which is separated
with CNN models. In this letter, we propose a new and
effective way to embed the SA into CNN for DA.

In our framework, we first use a pretrained CNN on source
domain to extract features on source and target domains. On
the basis of the extracted features, we apply SA, leading to
a new SA layer. This new generated SA layer can be easily
embedded into the pretrained CNN model for fine-tuning. The
experimental results show that our method is able to reduce
the domain distribution discrepancy so as to improve the RS
scene classification.

II. METHOD

To alleviate the domain discrepancy between source and
target domains, we incorporate SA-based DA into a CNN
model for better RS scene image classification.

A. Subspace Alignment for Domain Adaptation

SA [12] is a classic and representative algorithm for DA,
so we first review the work of SA for DA.

We suppose that the data in an existing data set with
manually labeled ground truth are the source domain S,
and the newly obtained data set without ground truth is
the target domain T . Both of the source domain S and
the target domain T lie in a given D-dimensional space
and drawn independent identically distributed according to a
fixed but unknown source distribution DS and target distribu-
tion DT [12]. By using principal component analysis (PCA),

d eigenvectors X S and XT (X S , XT ∈ R
D×d ) are selected

as the bases of the source subspace and target subspace,
respectively. The shift between the source and the target
domains are then learned by aligning X S and XT .

In order to align X S to XT , a transformation matrix M is
defined, and M can be obtained by minimizing the Bregman
matrix divergence

M∗ = argmin
M

(||X S M − XT ||2F ) (1)

where || · ||2F is the Frobenius norm. As introduced in [12],
there is a simple closed-form solution of (1)

M∗ = X ′S XT (2)

where ′ means the transpose operation. We can use M∗ to
transform the source subspace X S to the target subspace XT

as in the following:

Xa = X S M∗ = X S X ′S XT (3)

where Xa is the learned matrix used to align the source
subspace domain to the target subspace domain. Using the
transformations, we can get aligned subspace SA and TA for
source and target domains by projecting the source domain
data to the target aligned source subspace and projecting the
target domain to the target subspace

SA = SXa (4)

TA = T XT . (5)

B. Proposed Method

In our method, we first train a CNN model on the source
domain S, then a pretrained CNN model on S can be obtained.
Using this pretrained CNN model, the features of both source
domain data S and target domain data T before the final fully
connected (fc) layer are extracted. Let FS and FT denote the
features of source domain S and target domain T , respectively,
whose feature dimensions are D. Then, we select d-dimension
eigenvectors as bases of the source and target domain sub-
space for PCA-based dimension reduction as described in
Section II-A. Based on (4) and (5), we can compute Xa

and XT to align the subspace of source domain S and target
domain T . Using the transformation Xa and XT , we define a
new SA layer LSA. Because Xa and XT are just for matrix’s
dot product, each of them can be easily represented as the
parameters of one fc layer in CNN. The new added SA layer
LSA is actually a kind of fc layer for SA. The algorithm flow
for computing the SA layer LSA is shown in Algorithm 1.

The whole pipeline of the proposed method is shown
in Fig. 2. First, we train a CNN model on the source domain S
and then apply the pretrained CNN model to extract features
FS and FT from the source domain (S) and target domain (T ).
Then, Algorithm 1 is used to align the subspace and construct
the new SA layer LSA. Finally, we add LSA before the final
fc layer of the pretrained CNN for DA.

For continuous training on source domain S, usually called
fine-tuning, we use Xa to construct LSA. For testing on the
target domain T , we use XT to construct LSA. In this way,

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on July 27,2021 at 18:14:32 UTC from IEEE Xplore.  Restrictions apply. 



1326 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 8, AUGUST 2019

Fig. 2. Pipeline of the proposed method. First, a pretrained CNN on source domain S is applied to extract features of source domain (S) and target domain (T ).
Then, features FS and FT are used for SA, resulting in new SA layers L

fine-tuning
SA and L

testing
SA . Finally, we add LSA into the pretrained CNN for DA.

Note that the parameters for LSA are fixed in the CNN fine-tuning and testing after SA.

Algorithm 1 Computing the SA Layer
Input: source domain feature FS , target domain feature FT ,

subspace dimension d .
Output: SA layer LSA.
1: X S ← PC A(FS)
2: XT ← PC A(FT )
3: Xa ← X S X ′S XT

4: Lfine−tuning
SA ← Xa

5: L testing
SA ← XT

the subspace of FS and FT is aligned to reduce the domain dis-
tribution discrepancy. Using the CNN structure AlexNet [16]
as an example, let us explain the implementation details. The
dimension of extracted features before the final fc layer (FC8)
is D = 4096. Suppose we use PCA’s d = 1024 dimension for
the subspace, Xa and XT will be both 4096× 1024 matrices.
For fine-tuning the CNN on S, Xa is used to define a new
fc layer, i.e., Lfine-tuning

SA , and inserted into AlexNet before
the final fc layer. For testing the CNN on T , XT is used to
define a new fc layer, i.e., L testing

SA , and replace the Lfine-tuning
SA

layer in the already fine-tuned AlexNet model. It is worth
mentioning that the parameters for LSA are fixed in the CNN
fine-tuning and testing after SA. To be consistent in dimension
after adding LSA, the final fc layer in AlexNet is modified to
reduce the dimension from d = 1024 to the number of classes
for classification. The proposed method is very flexible that
LSA can be easily inserted before the final fc layer of different
CNN structures, such as AlexNet [16], VGGNet [17], and
ResNet [18].

III. EXPERIMENTS

A. Data Sets

1) RSSCN7 Data Set: The RSSCN7 [3] data set contains
2800 RS images, which consists of the following seven typical
RS scene categories: grassland, farmland, industrial region,
river and lake, forest, residential region, and parking lot. The
images are collected from the Google Earth, the 400 images in
each class are sampled on four different scales and 100 images
are selected per scale. All the images in this data set has a size

Fig. 3. Sample images from two public data sets used in our experiments
(seven classes in total). The top row is from UC Merced data set [4] and
the bottom row is from RSSCN7 data set [3]. Each column presents the
corresponding class of these two data sets.

of 400× 400 pixels. The whole image data set is divided into
two equal-size subsets: one is training set (total 1400 images:
7 classes, 200 images per class) and the other is testing set
(total 1400 images: 7 classes, 200 images per class).

2) UC Merced Data Set: The UC Merced Land Use data
set [4] is commonly used for RS scene image classifica-
tion. It consists of 21 land-use classes and each class con-
tains 100 images of 256 × 256 pixels. The 2100 images
were downloaded from the United States Geological Survey
National Map. To match the seven classes in RSSCN7 data
set, we select the corresponding seven similar classes from
UC Merced Land Use data set for experiments: golf course,
agricultural, storage tanks, river, forest, dense residential, and
parking lot. We denote the selected subset (total 700 images:
7 classes, 100 images per class) of the UC Merced Land Use
data set as UC Merced data set in this letter.

Some sample images of corresponding classes from the
RSSCN7 and UC Merced data sets are shown in Fig. 3.

B. Baseline CNN Models

For the baseline CNN models, we use three kinds of
popular CNN structures, i.e., AlexNet [16], VGGNet [17], and
ResNet [18] in our experiments of RS scene image classifica-
tion. AlexNet consists of five convolution layers and three fc
layers. VGGNet shows that increasing depth of the network
architecture with very small filters can improve the accuracy
in the large-scale image recognition. The Vgg16 model is
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used for our experiment. ResNet introduces a residual network
to ease the training of deeper networks. The ResNet50 and
ResNet152 models are used for our experiment.

C. Experiment Settings

In experiments, we consider two scenarios separately.
1) Scenario I: In this scenario, we conduct the DA from

the source domain of UC Merced data set to the target
domain of RSSCN7 testing data set. The source domain
and target domain are from two different data sets, so the
differences of image types, scales, and contents are significant
as shown in Fig. 3. Thus, the domain distribution discrepancy
in Scenario I is large.

2) Scenario II: In this scenario, we conduct the DA from
the source domain of RSSCN7 training data set to the target
domain of RSSCN7 testing data set. The source domain and
target domain are from the same data set, so the image differ-
ence is very small. Thus, the domain distribution discrepancy
in Scenario II is very small.

In experiments, we compare performances of three settings:
“Original,” “Proposed,” and “Proposed+.” “Original” is a pre-
trained CNN model on the source domain S. In experiments,
we borrow the pretrained CNN model on ImageNet as the
initialization to fine-tune on the source domain S so as to
obtain the “Original” model. “Proposed” denotes the proposed
method: after adding LSA into the “Original” model, we fix
the parameters of all the network layers except the final fc
layer and then fine-tune the CNN model with S and test it
on T . “Proposed+” denotes the proposed method: after adding
LSA into the “Original” model, we only fix the parameters of
LSA and then fine-tune the CNN model with S and test it
on T . We implement the LSA and conduct experiments using
PyTorch [19]. All of the images are normalized into the size
of 224×224. During training, we set the initial learning rate at
0.001 and decayed with a factor of 0.9 of every seven epochs.
The momentum is 0.9 in our experiments and the maximum
iteration number is 100. We set the batch size of four in all
the experiments. To calculate the SA layer, we use the code
provided in [12] directly. We set the PCA subspace dimension
d = 1024 in Algorithm 1 uniformly for AlexNet, Vgg16,
ResNet50, and ResNet152. The feature dimensions extracted
from the final fc layer in AlexNet and Vgg16 before PCA
are D = 4096 while they are D = 2048 for ResNet50 and
ResNet152, which are determined by their default network
structures.

D. Experimental Results

The experimental results for Scenario I and Scenario II are
given in Tables I and II, respectively. We can see that the
proposed method with LSA added can help to reduce the
domain difference and improve the classification accuracy.
Because the Scenario I’s domain difference is large, so the
performance improvement is significant in this case. While the
Scenario II’s domain difference is very small, the performance
improvement is very little. This result is consistent with the
definition of the added LSA. LSA is designed to reduce the
domain difference between source and target domains in CNN.

TABLE I

AVERAGE CLASSIFICATION ACCURACY OF SCENARIO I WHERE DOMAIN

DIFFERENCE IS LARGE: DA FROM UC MECERD DATA SET TO

RSSCN7 TESTING DATA SET (UNDERLINED

ITALIC: IMPROVED, BOLD: BEST)

TABLE II

AVERAGE CLASSIFICATION ACCURACY OF SCENARIO II WHERE DOMAIN

DIFFERENCE IS VERY SMALL: DA FROM RSSCN7 TRAINING DATA

SET TO RSSCN7 TESTING DATA SET. AS A COMPARISON,

THE ACCURACY OF ZOU et al. [3] IS 77.0% BY A

DBN-BASED FEATURE SELECTION METHOD

If the domain difference is large, LSA will help to improve the
performance significantly. However, if the domain difference
is very small, LSA can only help a little. In Scenario I, we see
that “Proposed+” obtains obviously improved accuracy versus
“Original” and “Proposed.” It demonstrates that fine-tuning
the whole CNN including the convolution layers is better than
only fine-tuning the final fc layer for the task of RS scene
classification. We think the reason is that “Proposed” only
performs SA while “Proposed+” applies SA and feature selec-
tion. Specifically, fine-tuning the whole CNN with fixed LSA
(“Proposed+”) affects the feature selection in the previous
convolution layers for a better classification.

Fig. 4 shows the classification accuracy of “Proposed+”
for each image class in Scenario I, Scenario II by different
CNN models and the classification accuracy in [3] is also
displayed for comparison. The method in [3] is a supervised
method, which uses RSSCN7 training data set for deep belief
network (DBN) training. We can see that the ranking of
classification accuracy is: our method in Scenario II > the
method in [3] > our method in Scenario I. Without using any
data in RSSCN7 data set for CNN training, our method in
Scenario I still achieves good and acceptable classification on
RSSCN7 testing data set. It is amazing to see that in some
classes, such as grass and river, our method in Scenario I
obtains comparable performance with the supervised method
in [3]. Our method in Scenario II using RSSCN7 data set for
CNN training obtains much better accuracy than that in [3].

In order to choose the dimension d after the PCA dimension
reduction, experiments using the “Proposed+” method in
“Scenario I” are considered by changing d from 4 to 2048. The
detailed classification results are given in Table III. We follow
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Fig. 4. Classification accuracy on RSSCN7 testing data set of “Proposed+” for each class in Scenario I and Scenario II by different CNNs. In some classes
(like grass and river), our method in Scenario I not using RSSCN7 data set for CNN training can obtain comparable accuracy with the supervised method
in [3] using RSSCN7 data set for training. Our method in Scenario II using RSSCN7 data set for CNN training obtains much better accuracy than that in [3].

TABLE III

AVERAGE CLASSIFICATION ACCURACY (%) OF THE “PROPOSED+” METHOD IN SCENARIO I. d IS THE PCA SUBSPACE DIMENSION

two rules to select d: 1) If d is too large, say > 2048, it will
generate a large number of parameters in LSA leading to
training difficulties and 2) If d is too small, say 4, 8, or 16,
some valuable feature information might be lost leading to
low accuracy. The experimental results given in Table III also
verify the two rules. The best average performance is achieved
when d = 1024, so we suggest d = 1024 for this task.

IV. CONCLUSION

In this letter, we propose a DA method for RS scene image
classification. With the proposed strategy embedding a SA
layer into CNN models, we transfer the information from
the source domain to target domain. The proposed method is
very flexible that the SA layer can be easily incorporated into
most CNN models. The experimental results on two public RS
data sets show that the proposed method can help to improve
the scene classification when there is a significant domain
difference between source and target domains.
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